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ABSTRACT. We establish an explicit formula for the limiting free energy density (log-
partition function divided by the number of vertices) for ferromagnetic Potts models on
uniformly sparse graph sequences converging locally to the d-regular tree for d even, cover-
ing all temperature regimes. This formula coincides with the Bethe free energy functional
evaluated at a suitable fixed point of the belief propagation recursion on the d-regular tree,
the so-called replica symmetric solution. For uniformly random d-regular graphs we further
show that the replica symmetric Bethe formula is an upper bound for the asymptotic free
energy for any model with permissive interactions.

1. INTRODUCTION

Let G = (V, E) be a finite undirected graph with vertices V' and edges F, and 2" a finite
alphabet of spins. A factor model on G is a probability measure on the space of (spin)
configurations o € 2V of the form

vi(@) = 75 11 vlonon [ [ o), (1)

(ij)eE eV

where v is a non-negative symmetric function on 22, v is a positive function on 2", and
Za(¥) = Zg is the normalizing constant, called the partition function (with its logarithm
called the free energy). The pair 1 = (¢, 1)) is called a specification for the factor model (1),
and we assume it to be permissive, meaning there exists o? € 2" with min, ¢ (o, o?) > 0.

A primary example we consider in this paper is the g-state Potts model on G with inverse
temperature 8 and magnetic field B, given by specification

U(o,0') =M= (o) = PN 2 = [q] ={1,...,q}. (2)

We write VG’B for the corresponding measure on [¢]V. The model is said to be ferromagnetic
if B > 0, and anti-ferromagnetic otherwise. The case ¢ = 2 corresponds to the Ising model.

In this paper we study the asymptotics of the free energy for factor models (1) on graph
sequences G, = (V,,, E,) converging locally to the d-regular tree Ty (d = 3) in the sense of
Benjamini-Schramm [BS01] (see Defn. 1.1). This class includes in particular any sequence
of d-regular graphs with girth (minimal cycle length) diverging to infinity.
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The study of statistical mechanics on regular trees has a long history going back to
Bethe [Bet35]. While tree graphs do not capture the finite-dimensional structure of ac-
tual physical systems, models on trees are often amenable to exact analysis. Further, it is
often argued that they are a good approximation to models on the lattice Z? for large d or
for long interaction range [Weid8, ATA73, CLR79, Tho86]. According to this expectation,
models on trees provide a flexible and well-defined approach for investigating mean-field
theory (i.e. the behavior of statistical mechanics models in high dimensions).

While this expectation proves to be correct in a number of examples, it has recently become
clear that, in many cases, models on trees fail to capture the “correct” mean-field behavior.
Spin glasses provide an important example of this phenomenon: a fairly natural class of spin
glasses on trees was introduced by Thouless [Tho86] and further characterized by Chayes
et al. [CCST86]. However, the thermodynamic behavior observed there is very different
from the widely accepted mean-field theory of spin glasses, as obtained from analysis of the
Sherrington—Kirkpatrick (SK) model [MPV87, Talll]. In particular, the low-temperature
phase of the tree models defined in [Tho86] does not exhibit replica symmetry breaking (in
contrast with SK). A similar discrepancy was observed in the case of Anderson localization
by Aizenman-Warzel [AW06].

In the case of spin glasses, Mézard—Parisi [MP01] argued that this difference arises because
of a particular feature of tree graphs: in the subgraph induced by the first ¢ levels of the
regular tree, the leaves constitute a non-vanishing fraction of the vertices as £ — oo. They
suggested that mean-field theory ought instead to be defined by considering graphs that
are not themselves trees, but “look like regular trees” in the neighborhood of a typical
vertex (which fails for the depth-¢ subtree of the regular tree) — the canonical example
being the (uniformly) random d-regular graph ensemble. This approach allows to reconcile
discrepancies in several known cases. In particular, spin glasses on random regular graphs
are expected to exhibit replica symmetry breaking with features analogous to the SK model
(see [MPO1] and [MMO09, Ch. 17]).

Let us also mention that the study of statistical mechanics models on locally tree-like
graphs has attracted renewed interest because of the connection with random combinatorial
problems, such as k-SAT and graph coloring. Statistical physicists were indeed able to com-
pute threshold locations for these models by analyzing suitable Gibbs measures on locally
tree-like structures [MPZ02, KMR*07, MMO09]. Rigorous verification of these predictions is
an outstanding mathematical challenge.

In this paper we consider the existence and value of the free energy density (asymptotic
free energy per spin)

o= lirrolo Op = lirrclo n'Eu[log Z,], Zn.=Za, (W), (3)
for G,, a (possibly random) graph sequence converging locally to the regular tree and E,
expectation over the law of G,. For Ising (specification (2) with ¢ = 2) models in the
ferromagnetic regime, for any graph sequence with uniformly integrable average degree con-
verging locally to a (possibly random) tree, the free energy density (3) exists and depends
only on the local limiting tree [DM10b, DGvdH10, DMS13]. The computation of ¢ al-
lows to compute various limits of interest with respect to the v, , as done for example in
[IMMS12, DGvdH10]. Proving existence of the free energy density for ¢ > 2 and general
specification 1 poses several challenges:'

IExistence of (3) for general 1 is equivalent to right convergence of G,, in the language of [BCKL13].



REPLICA SYMMETRY FOR POTTS MODELS ON d-REGULAR GRAPHS 3

1. There are examples in which the free energy density (3) depends not only on the local lim-
iting tree but also on the particular graph sequence. For example, in the anti-ferromagnetic
Ising model at sufficiently low temperature (sufficiently negative (3), it is not difficult to show
that the free energy per spin on random d-regular graphs is asymptotically lower than on
random bipartite d-regular graphs. As a consequence local weak convergence is not in full
generality a sufficient condition for existence of the limit (3).

2. Statistical physicists have put forth a number of conjectures (corresponding to different
models or regimes) on the free energy density (3) (see e.g. [MPV87, MMO09]). This analysis
generally imposes a probability distribution on the graph G,, which is suitable for calcula-
tions, typically the Erdds-Renyi or configuration models. Ensuing rigorous work has also
focused on the same random graph ensembles (see e.g. [Talll]) rather than understand-
ing which graph sequences in general have a limit (3). In this paper we focus instead on
individual graph sequences.

Characterizing the limit for ensembles of uniformly random graphs is already beyond
current techniques for many factor models (1). Achieving the same goal for general locally
tree-like graph sequences is all the more difficult, and requires to go beyond what is known
from physics methods. A simple example is provided again by the anti-ferromagnetic Ising
model: existence of the limit can be proved by a combinatorial interpolation [BGT10], but
even a heuristic prediction of the value is unavailable.

In contrast, as mentioned above the free energy density for the ferromagnetic Ising model
on locally tree-like graphs exists and can be explicitly computed. Its value is given by the
(replica symmetric) Bethe free energy prediction ®*, which is expressed in terms of solutions
of a certain fixed-point equation ((5) and (6) give the prediction in the d-regular setting; for
the general case see [DM10a, DMS13]). The Ising Bethe prediction was proved (for all 5 > 0,
B € R) in the case of graphs with Galton—Watson local limiting trees via an interpolation
scheme [DM10b]. In subsequent work [DMS13] a generalized scheme was developed which
extended this result to graphs with general local limiting trees. This method was applied
also to show liminf, ¢, = ®* in the ferromagnetic ¢-Potts model (5 = 0, B > 0) for all
q > 2, but could only pin down ¢ = ®* in limited regimes of (3, B).

The difficulty of the Potts model (¢ > 2) may be understood as follows: by a monotonicity
argument, the local weak limit of Potts measures on GG, is sandwiched between the free and
maximally 1-biased automorphism-invariant Gibbs measures on the local limiting tree. For
q = 2 these measures coincide for all 3 > 0, B > 0.2 By contrast, for ¢ > 2 these measures
disagree in certain regimes of (3, B). This corresponds to the appearance of “multiple stable
fixed points” in the recursion (5) as soon as ¢ > 2, as we demonstrate below in the d-regular
setting (§1.3, Figs. 1 and 2).

In this paper we prove the matching upper bound limsup,, ¢, < ®*, thereby explicitly
determining the free energy density (3), for the Potts model for all ¢ > 2, 5 > 0, and B > 0,
on graphs converging to regular trees of even degree. Let us mention that where multiple
fixed points arise, the statistical physics folklore prescribes that the fixed point with the
highest Bethe free energy density should be selected. However, in the physics literature this
is justified only via analogy with other models, without providing arguments which apply
to locally tree-like graphs. Our result is the first rigorous verification of this variational
principle in a non-trivial example for locally tree-like graphs.

In the Ising model, the case B < 0 is handled by symmetry, and the result follows for B = 0 by continuity.
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Additionally, we supply a rigorous probabilistic interpretation for this variational principle
in the setting of the uniformly random d-regular graph ensemble. In this ensemble we show
that n~!'logE,[Z,] (which clearly upper bounds ¢, = n 'E,[log Z,]) converges exactly
to ®*. In fact, the computation of E,[Z,] can be understood to correspond in a very
precise manner to the folklore prescription of maximizing Bethe free energy over all fixed
points. Validity of the Bethe prediction ¢ = ®* for the uniformly random d-regular ensemble
therefore requires concentration of Z, over the space of d-regular graphs (since E[log X| ~
log EX indicates concentration of the positive random variable X). This is consistent with
the physics picture that the regimes where the Bethe prediction fails are characterized by
non-concentration of Z, (replica symmetry breaking; see [KMR*07]).

A different variational principle was proved in [Gue03, ASS03] for mean-field spin glass
models, but in that case the free energy density needs to be minimized. This difference
is typically attributed by physicists to the difference between ferromagnetic and spin glass
models; it remains an outstanding challenge to understand these two variational principles
within a common framework. In the context of models on sparse graphs, Contucci et al.
[CDGS13] recently proved that the variational principle of [Gue03, ASS03] provides a bound
on the free energy of anti-ferromagnetic Potts models, which was proved to be tight at high
temperature.

The rest of the paper is organized as follows: in the remainder of this introductory section
we review the definitions of local convergence and the Bethe prediction and formally state
our results, which we divide into two categories: in §2 we study the Bethe prediction on
the uniformly random d-regular graph ensemble and prove the variational principle. In §3-4
we prove results in the more general setting of graphs converging locally to the d-regular
tree. We conclude in §5 with some supplementary results on local maximizers in the Potts
variational problem.

1.1. Local convergence. Throughout this paper, graphs are allowed to have multi-edges
and self-loops unless otherwise stated. If GG is any graph and U any subgraph, we write oU
for the external boundary of U in G (the set of vertices in G adjacent to but not contained
in U). For any vertex v of G, write B;(v) for the subgraph induced by the vertices of G at
graph distance at most ¢ from v.

Fix d throughout and let T; = (Ty, 0) denote the d-regular tree rooted at o, with T,
Bi(0) the subtree of depth t. For G = (V, E) a finite undirected graph, let

G(G) = V[T'[{ve Vi Bi(v) # Tu,}| (4)

where = denotes graph isomorphism.

Throughout this paper we consider a sequence of (random) graphs G,, = (V,,, E,) with
V.| — 0. Write P, for the law of G,,, and E, for expectation over P,,. We consider graphs
which are locally like the d-regular tree in the following sense:

Definition 1.1. We say that G,, = (V,, = [n], E,) is a uniformly sparse graph sequence

converging locally to the d-reqular tree T} if the following hold:

(a) (uniform sparsity) imp . |Va| ™' 3 En[|0v[1{]0v] = L}] = 0; and

(b) (local weak convergence) for each t = 0, the random variable (;(G),) as defined in (4)
converges in probability to zero in the limit n — co.

This setting, which we assume throughout, is denoted G,, — .. Ty.
With no loss of generality, we assume hereafter V,, = [n] = {1,...,n}.
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Proposition 1.2. Consider the factor models (1) defined by a permissive specification 1,
and suppose G,, = (V,, = [n], Ey,) is a graph sequence for which the free energy density (3)
exists, ¢ = lim, ., n 'E,[log Z,]. (Here we do not assume Gy, — 1o Ty.)

(a) If the G, have uniformly bounded degree then n~tlog Z, — ¢ almost surely as n — oo.
(b) If the G,, are uniformly sparse (Defn. 1.1a) then n™'log Z,, — ¢ in probability asn — 0.

1.2. Bethe prediction in the regular setting. We now describe the Bethe free energy
prediction in the special setting of a graph sequence converging locally to the d-regular tree;
for a more general description see [DM10a, DMS13].

Definition 1.3. Let J# denote the (|2"| — 1)-dimensional simplex of probability measures
on 2. The belief propagation or Bethe recursion is the mapping BP : 5 — 7 defined by

(BPL)(0) ——¢ (Zwaa )_1, oe, (5)

with z;, the normalizing constant. Denote by 5% < . the set of BP fixed points.

Remark 1.4. Note that for permissive ¥, any fixed point h € J* must be strictly positive.
Let T'y denote the (d—1)-ary tree (in which every vertex has d—1 children), and consider the
factor model (1) on the depth-t subtree T';; multiplied with “entrance law” or “boundary
law” h € 7 on each spin at depth ¢. Then h € S if and only if the resulting marginal
law at the root of T'; is again h. Fixed points h € J#* correspond to “Markov chain Gibbs
measures” [Spi7h, Zac83] (also “splitting Gibbs measures” or “Bethe Gibbs measures”) —
natural candidates for the local weak limit of v, (see e.g. [DMS13, Rmk. 1.12]).

Definition 1.5. For a factor model (1) on a graph sequence G,, —,. Ty, the Bethe functional
is the mapping ® : 77 — R defined by

~ log { RIONIC o’)haf)d} — (d/2)log { S a’)haha/} NG

- “ _

“vertex te;;n” V= (h) “edge te;;” ®e(h)
(See §1.3 for explanation of the ®V* ®° notation.) The Bethe free energy prediction is that
the limit ¢ of (3) exists and equals ®* = sup{®(h) : h € F*}. (7)

1.3. Results for general d-regular graphs. The following is our main result, establishing
the validity of the replica symmetric Bethe solution for ferromagnetic Potts models (2) on
general graph sequences G, — . Ty:

Theorem 1. For the Potts model (2) on G, — . Ty with d even, ¢ = ®* for all 5, B =

In [DMS13] we established the lower bound liminf,, ¢,, = ®* for all d. In this paper we
prove the matching upper bound lim sup,, ¢, < ®* for d even.

The result for ¢ = 2 (the Ising model) is a special case of the results of [DM10a], and
is depicted in Fig. 1 (the Ising result also holds for d odd). Let us comment on some key
differences between the Ising model and the Potts models with ¢ > 2. For the Ising model,
the space ¢ is one-dimensional, so the Ising belief propagation is a univariate recursion,
which is straightforward to analyze. For the Potts model with ¢ > 2, 7 has dimension larger
than one: the belief propagation mapping becomes more difficult to analyze; and indeed in
85 we exhibit a multiplicity of fixed points h € 777*.
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FIGURE 1. Ising model (q = 2) with d = 4, B = 1/1000, 8 on horizontal azis.
The left panel shows the Bethe fixed points h € #7*, parametrized by r = log(h1/h2).
Solutions r < 0 (gray curve) are shown to be irrelevant since the model favors spin 1.
The right panel shows the corresponding evaluation of the Bethe function, ®* = ®(h*).

Most of the fixed points which we describe in §5 violate the physical “replica symmetric”
intuition that, since the model (2) favors spin ¢ = 1 while making no distinction among
the remaining spins, the solution h € J#* which attains the optimum in (7) should satisfy
hi = hy = ... = hy. The belief propagation restricted to this subspace is again a univariate
recursion, naturally parametrized by r = log(h/hs).

In our view, the central difficulty of the Potts (¢ > 3) models over the Ising model is the
presence of regimes of (8, B) with multiple stable fizved points, even under this restriction.
The situation is illustrated in Fig. 2. Let h® denote the limit of successive iterations of
BP starting from the uniform probability measure on [g], and let A™ denote the limit of
successive iterations of BP starting from the probability measure on [¢]| supported on spin 1.
Then h®, h® are elements of J#*, and there are regimes where they differ and give different
evaluations of the Bethe functional .

1.4. Bounds by graph decomposition. Our proof of Thm. 1 illustrates a more general
principle which we now describe in the abstract factor model setting (1). We restrict the
discussion below to d-reqular graph sequences G,, — . Ty, since in §3 we will show that, for
the purposes of computing the free energy, general sequences G,, — .. Ty can be reduced to
the d-regular case using the uniform sparsity hypothesis.

For a finite graph G let I5 denote a uniformly random vertex in G, and write I,, = I, .
From now on let P, denote the joint law of (G,, I,,), and E, the expectation over P,. An
equivalent definition of local convergence of G,, to Ty is that P,,(B(I,,) # Tut) = E,[G(Gr)]
converges to zero as n — o for all ¢ > 0. Uniform sparsity of G,, is equivalent to uniform
integrability for the random degrees |01,].

For d even, a d-regular graph GG can be reduced by removing a random vertex [ — leaving
the “cavity graph” G° = G\I with d unmatched half-edges incident to the neighbors oI of
I in G — then placing a matching m on these half-edges to form a d-regular graph G™ with
one less vertex. Thm. 1 is proved by showing that over successive iterations of this reduction,
the corresponding increments in the log-partition function are upper bounded by ®* until
the graph is reduced to almost nothing.
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FIGURE 2. Potts model (q = 30) with d =4, B =1/50, 8 on horizontal axis.

The left panel shows the Bethe fixed points h € S satisfying hy = ... = hy, parametrized
by r =log(hi/hs). Solutions r < 0 are deemed irrelevant since the model favors spin 1.
The minimal and maximal non-negative fixed points are 7, 7™ (corresponding to h®, h®),
and there is a regime of § (shaded between vertical lines) where they fail to coincide.

We chose here a large value of ¢ to exaggerate this effect, but precisely the same
qualitative phenomenon occurs for B > 0 sufficiently small for all d > 3, all ¢ = 3.

The right panel shows the corresponding Bethe functional evaluations, ®(h*) and ®(h™).
In [DMS13] we established the lower bound liminf,, ¢,, > ®(h*) v ®(h™), together with an
upper bound which was not sharp in the rf < r® regime. In this paper we prove the
matching upper bound for all values 8 > 0, provided d is even (Thm. 1). We also prove
that ®(hf) v ®(h™) is in fact the maximum ®* of ® over all of 7#* (Thm. 4).

The first observation is that the ratios Zg/Zge and Zgnm/Zge can be expressed as averages
over the cavity measure vy = vgeo:

Z —

ZG = Z Va(gaf)zw(a) H W(o,0;) = T (1),
Go Tor = jeor

Zom

ZZ,} - Z V@(Q@I) H Q,D(Oi? 0‘]) = \I[egn(]/a)‘

Zor (ij)em

Write U™ (1) = UV (1,)/ U™ (). If v, is a d-fold product measure h®? (h € ), then
log ¥"*(1v,) and log U¢(v,) reduce to the functions ®¥*(h) and ®*™(h) of (6), with difference
log U(vs) = ®(h). Averaging over matchings m we define the symmetrizations

1 \I’VX(V(;)
N genm gy — ) 8
(d — 1)” ; (V(9>7 (V(9> \Ilevsym(ya) ( )

Jesym (VE?) =

Definition 1.6. Let s#¢ denote the space of d-fold product measures h = b1 ® --- ® hy
(h; € ), and let .#y() denote the space of all mixtures over #%: a measure v on 24
belongs to #,(7) if it can be expressed as

v(oy,...,0q) = f hi(o1) -+ - hq(oq) dp(h), mixing measure p.
wa

Theorem 2. Consider the factor models (1) defined by a permissive specification 1. Suppose

there is a subspace F% < F for which the following hold:
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(i) There is a uniformly bounded function err(t, ) satisfying lim, ., limsup, qerr(t, z) = 0
such that the minimal total variation distance between the cavity measure vy = vey g and
M(8) is upper bounded by err(t, (;(G)) over all d-reqular graphs G; and

(ii) The function U™ defined in (8) satisfies log U™ (h) < ®* for all h € (%)<,

Then limsup,, ¢, < ®* for the factor model on G,, specified by .

In §4 we show that the conditions of the preceding theorem are satisfied in the Potts model
(implying limsup,, ¢, < ®*) for any 8 > 0 and B > 0. The bound extends to B = 0 by
continuity. Thm. 1 is then proved as the matching lower bound lim inf,, ¢, > ®* was shown
in [DMS13, Thm. 1.10]. Of several natural modifications of the graph reduction procedure
which we considered for the case of d odd, all fail condition (ii).

1.5. Bethe variational principle and uniformly random regular graphs. The Bethe
prediction (7) has the following variational characterization. Let A denote the set of sym-
metric probability measures h on 22, with one-point marginals denoted by h. Define the
Bethe rate function

@(h) = oz ) ~ (d — DH(R) + (d/2)[Aog v + H(R) o)

= —H(h|¢) = (d/2)H(h|h®y h).

Above and hereafter, for p, ¢ finite non-negative measures on a finite space, H(p) denotes the
Shannon entropy — Y, p,logp,, and H(q|p) denotes the relative entropy ). ¢.log(¢s/ps)
between ¢ and p. We take the usual conventions log0 = —o0, 0log 0 = 0 and 0log(0/0) = 0.

Proposition 1.7 (Bethe variational principle). Any interior stationary point b of ® corre-
sponds to h € F* by the bijective relation

h(O’, O',) = (h, ®¢ h)m,//zh = ’Qb(O', a')hghof/zh (10)

(with zj, the normalizing constant). Any local mazimizer h of ® is an interior point of A,
so the Bethe free energy of (7) is given alternatively by

®* = sup ®(h), P the Bethe rate function (9). (11)
heA
Proof. Follows from [DMS13, Thm. 1.16] (using compactness of A). O

We supply the following simple interpretation for this variational characterization. For nd
even, let G,, = G, 4 denote the uniformly random d-regular graph on n vertices, sampled
according to the usual configuration model — that is, start with n isolated vertices each
equipped with d half-edges, and form the graph by taking a uniformly random matching on
the nd half-edges. Let E,, = E,, ; denote expectation with respect to the law of G, 4.

Conditioned on the event that G,, is free of self-loops and multi-edges, it has the law of
the uniformly random simple d-regular graph. This event occurs (for fixed d) with uniformly
positive probability in the limit n — co [JLRO0].

Theorem 3. Consider the factor models (1) defined by a permissive specification 1. With
E,, denoting expectation with respect to the configuration model for d-reqular graphs on [n],

limsupn 'E,[log Z,] < lim n"'logE,[Z,] = ®* (12)
n—0o0

n—00

The following proposition serves as a counterpoint to (12):

Proposition 1.8. In the setting of Thm. 3, if the inequality in (12) is strict, then there
exists a sequence G, of d-reqular graphs for which liminf,_,., n~'log Z, > ®*.
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We highlight this proposition here because it demonstrates that if the uniformly random
ensemble has free energy ¢,, strictly below the replica symmetric solution ®* — as is expected
to happen in replica symmetry breaking regimes — then there is breaking of homogeneity in
the d-regular graph space as well, with a large subclass of graphs achieving free energy strictly
above ®*. An interesting open question is whether the maximal asymptotic free energy is
achieved by random bipartite graphs, as is known to be the case in two-spin models [SS13].

1.6. Explicit Potts Bethe prediction. Surprisingly, another consequence of Thm. 3 is
the following solution to the optimization problems (7) and (9) for the ferromagnetic Potts
model. Let hf denote the limit of successive iterations of BP starting from the uniform
probability measure on [¢], and let h™ denote the limit of successive iterations of BP starting
from the probability measure on [¢] supported on spin 1.

Theorem 4. For the Potts model (2) with 3,B > 0, ®* = ®(ht) v &(h™), and if B > 0
then this is strictly greater than ®(h) for any h € 7*\{h*, h®}.

In §5 we supplement Thm. 4 by a classification of stationary points of the Potts Bethe
rate function ® (equivalently, via (10), solutions of the Potts Bethe recursion), as well as
a study of which stationary points can be local maximizers. The detailed statements are
given in Propns. 5.3 and 5.4. The motivation for considering local maximizers of ® — which
after all are irrelevant to the Bethe prediction (11) if they are not global maximizers — is
that we expect these are precisely the fixed points which can be seen in local weak limits of
conditioned factor models on graph sequences G,, — . Ty, in the spirit of [MMS12]. That
is, when h is a local maximizer of ®, the factor model restricted to configurations of edge
empirical measure close to h should converge locally weakly to the (Bethe) Gibbs measure
corresponding to h. However, §5 is independent of the rest of the paper.

2. UNIFORMLY RANDOM d-REGULAR GRAPHS

2.1. Expectation of the partition function. Given spin configuration ¢ on the vertices
of graph G, define the edge empirical measure

211E| Y, (H(on0y) = (0,00} + U(ow,05) = (0. 0)})

(ij)eFE

h(c,0') =

and write h for its one-point marginal (the vertex empirical measure). Recall the following
strong form of Stirling’s approximation [Rob55] 1 < n!/[v/2mn(n/e)"] < e. Recall also that
for n even, the number of matchings on [n] is the double factorial (n — 1)!! = n!/[(n/2)!27/2].

Proof of Thm. 3. Let Z = Z, denote the partition function for the factor model (1) on
the random graph G = G, 4. We decompose Z =}, Z(h) with Z(h) the contribution
from configurations ¢ with edge empirical measure h. Recall that h denotes the one-point
marginal of h. The expected number of h-configurations on G is given (with the obvious
multi-index notation) by

# assignments on half-edges probability of matching consistent with given spin assignment
A A
n ndh(o
- H Hndhaa—l”nx/ndhaa
nh ndh(o (nd -
o#o’

exp{n[(d/2) —(d— )H(ﬁ)]} by Stirling’s formula.
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Each h-configuration receives the same weight ¢ ("4/2" — oxp{ndlog ¥ )5+ (nd/2)1og )r},
S0

EZ(h) = n°Y exp{n[{log ¥y, — H(h) + (d/2)[Qog ¥)n + H(h)]]} = n%Y exp{n®(h)}.
By Propn. 1.7, ® attains its global maximum at an interior point h* € A, which must lie
within distance O(n 1) of one of the empirical measures h realizable on G. On the other hand
there are only polynomially many such measures, so we conclude EZ = n°W exp{n®(h*)},
implying the theorem. 0

2.2. Concentration of the log-partition function. We now prove Propn. 1.2, which we
again emphasize applies to general uniformly sparse graph sequences G,, (with no assumption
on the local limiting tree).

Proof of Propn. 1.2. If G = (V, E) is any finite graph with an isolated vertex i, and G’ =
(V' E') is formed by adding d edges between i and V', then

ZG/ - ZZVG O-Z,O-az 1_[ 1/] O'Z,O'] (wmax)d

(1j)eENE

with . the maximum over ¢ On the other hand, considering only the o; = oP term in
the above sum shows Zg//Zg = (min)?+ for ¢, = ming[¢(oP, o)].

(a) On any random graph G,, we may consider the Doob martingale of log Z,, with respect
to the vertex-revealing filtration. If all the ,, have maximum degree < M, then the above
implies that the Doob martingale has uniformly bounded increments — therefore, by the
Azuma-Hoeffding bound,

Po[|n""log Z, — ¢n] = €] < e ™M for a constant ¢ = (1) > 0. (13)
This proves n~!log Z, — ¢, — 0 almost surely, consequently n~!log Z,, — ¢ almost surely.

(b) For any M > 0, define the truncated graphs G,[M] by removing all the edges incident
to any vertex ¢ € V,, with [0i| = M. Let Z,[M] denote the associated partition function,
and ¢,[M]| = n"'E,[log Z,[M]]: then

|6 — $u[M]| < n7'E,[|log Z, —log Z,[M][] < cE,[|01,[1{]01,] > M}]
where the first inequality is Jensen’s while the second follows from the above, for a constant
c = c(1) > 0. By the triangle inequality, P(|n"'log Z, — ¢| > 4€) < A + B+ C + D where
A=P(nt|log Z, —log Z,[M]| =€) < (c/e)E[|0L,|1{|0L,] = M}] <
for M = M(c,€,0), n > n(M ¢, €,0);

B=P(|In"'log Z,[M] — ¢n[M]| =€) < exp{—nc(e/M)*} < forn > n(M, c,€0);
c=P(|p,[M] — ¢n| =€) zero for M = M (c,€), n = n(M,c,¢);
D = P(|¢, — ¢| =€) zero for n = n(e),

Therefore P(Jn"!log Z,, — ¢| = ¢) — 0 as n — oo for all € > 0, concluding the proof. O
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2.3. Replica symmetry breaking. We turn now to Propn. 1.8 which gives an indication
of the non-concentration of the partition function over the space of all d-regular graphs. The
proof is based on the observation that if the inequality in (12) is strict, then the concentration
bound (13) will force some graphs to have free energy > ®* +z for some x > 0. These graphs
will constitute an exponentially small fraction of all d-regular graphs on [n], but even this
is enough to extract a sequence G,, — . Ty, due to the following

Lemma 2.1. For any €,t > 0 there exists a = a(d,t,€) > 0 with P({(G) = €) < e~ @nlosn,

Proof. Recall the following classical inequality (see e.g. [McD98, Lem. 3.11]): if (I;)7~, is a
sequence of indicator random variables adapted to filtration (%)i,, and ay = E[I; | Fr_1],
then P(>," | I, = mx) < exp{—mH (x| a)} with a the average of the a;’s, and H(x |a) the
binary relative entropy between x and a.

Consider the process of revealing the graph G one edge at a time, with (ﬁk);ﬁ/f the
corresponding filtration, and let Iy (1 < k < nd/2) be the indicator that the k-th edge
forms a cycle of length < 2¢ within the graph revealed so far. Each such cycle can create
only a bounded number of vertices with depth-t neighborhood non-isomorphic to the depth-t
subtree of the d-regular tree, that is to say, we must have Y, I, = n(;(G) - 2« for a positive
constant o = a(d,t). For k < n(d/2 — ape), since the configuration model matches half-
edges uniformly at random, we must have ay = E[I}, | %_1] < ay/n for a positive constant
a; = aq(d, t, ope). Therefore

n(d/2—aqe)
P(G(G) =€) < P( Z I, > nea0> < exp{—n(d/2 — ape) H (e | a)}
k=1
with a the average of the (ar)r<n(d/2—aoe)- Since a < ay/n the result readily follows. O

Proof of Propn. 1.8. With P,, the d-regular configuration model law as before, let us define
p.(y) = Po(n"tlogZ, = ®* + y). Since clearly n~'log Z is uniformly bounded over all
d-regular graphs by a finite constant C' > ®*, we may bound (for 0 < x < C' — ®*)

EZ, < e™® 7 4 [pn(=6) — pn(2)]e™®+2) 1 p,(z)e"C.
Recalling Thm. 3 the left-hand side is n°Me™®” | and rearranging gives

o(1) _ ,—néd _ o ne
HOW _ 1 _ b (~4)c
e (C—®*) _ gna < pn(l")

Now suppose ¢ = limsup,, n 'E,[log Z,] is strictly below ®*: taking 0 < § < ®* — ¢™,
the concentration bound (13) implies that p, (—J) will be exponentially small in n. It is then
clear that one may choose z sufficiently small such that p,(z) = e ™¢~%)/2, Meanwhile,
from Lem. 2.1, we can take t(n) 1 o0 and €(n) | 0 slowly enough such that

P, (Gin)(Gr) = €(n)) < e ' pu(2)

Therefore the set of d-regular graphs G on [n] with n™'log Zg = ®* + z and (i) (G) = €(n)
has cardinality at least

(nd — D) p,(z)[1 — e '] = exp{(nd/2)logn + O(n)} » 1,

so clearly we may extract the desired sequence G,, —,c Ty, liminf, n"tlog Z, > ®* +z. O
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2.4. Solution of the Potts variational problem. We now apply the calculation of Thm. 3
to prove Thm. 4, giving an essentially explicit solution to the Bethe variational problem for
the ferromagnetic Potts model. We do not know of a proof which does not go through the
probabilistic interpretation for the Bethe variational principle which is described in Thm. 3.

The Potts Bethe recursion for 3, B > 0 preserves the subspace £ of measures on A
which are biased towards o = 1 while giving equal weight to all spins o # 1:

AP ={he#  h=[1+(1—qbl/gand hy =---=h, = (1 —b)/q with b= 0}. (14)

The map BP restricted to this subset is simply a univariate recursion: in terms of the log-
likelihood ratio r = log(h1/hs) = 0, it has the particularly simple form
eftr+qg—1

er+ef+q—2
which is straightforward to analyze; see e.g. [DMS13, Lem. 4.6]. The Bethe recursion fixed
points hf h® € S* n " with minimal and maximal bias b are given by the limits of
repeated iterations of this recursion started from r = 0 and r = o0 respectively; moreover
these are the only fixed points in 7%

Let us now review the well-known Fortuin-Kasteleyn (random-cluster) representation of
the Potts model. On a finite graph G = (V, E), denote a spin configuration o € [q]" as
before, and denote a bond configuration n € {0,1}¥. The Edwards-Sokal (ES) measure on a
finite graph G = (V, E) is the probability measure on pairs (g, n) given by

ESG’ g ﬂ HeBl{Ul_l} H [(1 - p)(l - 775) + pﬁel{(fi = Uj}]> (16)

G eV e=(ij)eE

BP:7— B+ (d—1)log (15)

with Zg the normalizing constant. Taking p = 1 — e™?, the marginal of ES; on the spin
configurations ¢ is the ¢-Potts measure with parameters (5, B), and we see that the Potts
partition function Zg is simply e®?l times the ES partition function Zs. The marginal of
ES¢ on the bond configurations 7 is the Fortuin-Kasteleyn (FK) measure

eBIVI
Hpne )L 1_[ 1+ (¢— 1>€—B|CI]7

ieE et (n)

FKG

where the second product runs over the collection %'(n) of connected components C' of n
(with |C'| denoting the number of vertices in component C').

The ES coupling between Potts and FK has the following simple description: conditioned
on the spins ¢, n is defined by a p-percolation on the bonds joining like spins, while all
bonds joining unlike spins are left unoccupied. In the other direction, conditioned on bond
configuration n with € (n) = (C1, ..., Cy), the spin configuration ¢ is given by assigning the
same spin to all the vertices of each component, independently over the different components.
Component C' receives spin ¢(C') = ¢ with probability

eBICIo=1} /[oBICT 4 (4 — 1)]. (17)

Proof of Thm. 4. We assume without loss that B > 0, with the result for B = 0 following
by continuity. We first show that the rate function ® cannot attain its global maximum
outside the subspace

A ={heA:h(1)=1/qgand h(2) = --- = h(q)}.
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To this end, consider conditioning on the FK configuration 7 in the ES coupling. Given
C € €(n), define the random variable Yo (o) = |C|1{c(C) = ¢}. For all ¢ # 1 this has the
same cumulant generating function
etlCl 4 eBICl 4 g — 2

eBICl + ¢ —1

ro(t) = log E[exp{tYo(o)} | 1] = log

For —owo <t < B/2 we calculate

vy =[G 1 q=2) Pt |Cp
¢ (etlCl + eBICl 4 ¢ — 2)2 T etlCl 4 eBICl 4 g — 2 T eBICI2

< (eB/4)™? = cp,

uniformly over all |C| = 0. Noting |%'(n)| < n, for all o # 1 we have

enth2/2 9

@, | Ce;(ﬂ)wc(a) Vel ] 2ac) <2 g U< 2

where the last inequality holds provided e/cp < B/2. Clearly, for all spins ¢ # 1 the
mean E[Yc(0)|n]| takes the same value, which is less than |C|/q. Let Z,[e] denote the
contribution to the Potts partition function on G,, from the space A[e| of measures h € A
with dist(h, AP¥) > e: the above implies there is a constant a = a(B, ¢) > 0 such that

Zole] < e Z, for e < cp(B/2). (18)

The estimate (18) holds for any graph G, on [n]. To prove the result, take G, = G,,
the random d-regular graph drawn from the configuration model. Comining (18) with the
calculation of Thm. 3 gives

nOW exp{n®*
7O expin sup{®(h) : b € A[e]}} = En[Za[e] < 2riZn) pin®’)

€n€2 aB 6n62a3

for all € < cp(B/2), proving the claim that @ can only attain its global maximum on APal,
To conclude the proof, we apply the variational principle Propn. 1.7. Let h be any global
maximizer for ®, so by the above h € AP Let h € 2* correspond via (10) to h: summing
(10) over one of the spins o’ gives z,h, = h[(e? — 1)h, + 1], which implies (since the right-
hand side is increasing in h, for h, > 0) that h € J#* n "2, As noted above, the only two
possibilities for h are h* and h®, concluding the proof. 0

3. RECURSIVE GRAPH DECOMPOSITION

In this section we prove Thm. 2 for graph sequences G,, —,. Ty (Defn. 1.1), d even. The
following lemma, whose proof we defer to the end of the section, reduces the free energy
computation to the case of d-regular graphs.

Lemma 3.1. If G,, —,. T, with d even, then there exists a d-reqular graph sequence G,, — o
T, with free enerqy ¢, such that lim, (¢, — ¢r) = 0.

The lemma is a refinement of the result of Propn. 1.2b. Assuming the lemma, we now
prove Thm. 2 by analysis of the following
Reduction operation R on d-regular graphs (d even).
Given graph G, remove a uniformly random vertex I, leaving the cavity graph
G° = G\I with d unmatched half-edges incident to the neighbors 01 of I
in G. Let G™ be the d-regular graph formed by placing matching m on
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these half-edges, and set RG = G™ for some choice of m which minimizes
log Z¢ — log Zem.
We prove Thm. 2 via the following propositions concerning operation R on d-regular graphs.

Proposition 3.2. Let G be any finite d-reqular graph, and write Eg for expectation over the
choice of a uniformly random vertex I in G. Under the conditions of Thm. 2,

Egllog Zg — log Zra] < ®* + err(t, ((G))
where err(t,x) is a uniformly bounded function with lim;_,,, limsup, ,err(t, z) = 0.

Proof. By definition of operation R and of the cavity measure vy = v 7, and recalling the
manipulations leading to the definition (8), we have

Z, U= (w,

Eg[log Z_RGG] = Eg[mnilnlog \Ilem—<(:a))] < Eg[log q/Sym(Va)]. (19)

Observe that for any permissive specification ¥, ¥¥*(v,) and ¥¢(v;) are uniformly bounded
and uniformly positive deterministically over all graphs G with maximum degree d — this
is easily seen by calculations very similar to the estimates of the ratio Zg//Z¢ appearing in
the proof of Propn. 1.2, together with the observation that the marginal of 1y on any vertex
must give uniformly positive measure to spin oP. It follows from condition (i) of Thm. 2 that
for some mixing measure p over (%)<, the right-hand side of (19) is within err(¢, (;(G)) of
§ U(h) dp(h) sym
[wesm(h) dp(ﬂ)] < Eesup log U*¥™(h).

(%)
Condition (ii) then gives that this is < ®*, concluding the proof. O

Eq [ log

Proposition 3.3. On any d-reqular graph sequence G,, —,. Ty it holds that
lim E, max : Q(RjGn)] =0 foralleg>0,t=0.

n—00 [Osj<(160 n
Proof. Let G be any d-regular graph on n vertices. For each vertex v in GG consider the event
Q. (v) = {Bi(v) = Ty in G, but Bys(v) % Ty in R/G for some j < ne}.

This implies that during the first ne applications of R, at least ¢/2 vertices were deleted along
some length-t geodesic path started from v. For each such geodesic, the same inequality cited
in the proof of Propn. 2.1 implies that the probability of > ¢/2 deletions along the geodesic
is (for € > 0 small)

< exp{—nel (t/(2ne) |t/(2n))} = exp{—(t/2)log(1/e) + O(t)},
which can clearly be made < d—3! by taking € < €(d). Taking a union bound over d* geodesics
shows that € (v) has probability < d~?, therefore

IP’[ max (n — j)GR/(G)) = né(G) + nd_t] < ]P’[ Z Q(v) = nd_t] <d?
Osysne veG
where the last step is by Markov’s inequality.

Now iterate the above over L = L(eg, €(d)) passes, removing an €(d)-fraction of vertices
on each pass until only an ep-fraction of the original vertex set remains. (L is roughly

3The function err(t, z) may need to be adjusted going from Thm. 2 to Propn. 3.2, but can be chosen to
depend only on d and 2.
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1081 _¢(4) €0, though not precisely so because each pass must remove an integer number of
vertices.) Taking a crude upper bound on the accumulation of errors gives

P[ max  (n _j)Ct/2L<Rj(G)) > n(G) + nLd—t/QL] < Ld2",
0<j<n(l—eo)

Thus, for the graph sequence G,

En[ max )Ct/zL(Rj(G))] < nE,[G(Gn)] + nLd—t?

0<j<n(l—eo

+ Ld?"

neop

The right-hand side tends to zero in the limit n — oo followed by t — oo, but the left-hand
side is non-decreasing in ¢ so it must in fact tend to zero as n — oo for all ¢, as claimed. [J

Proof of Thm. 2. By Lem. 3.1 we reduce to the setting of a d-regular graph sequence G,, — .
T,. Take ny = n(1 — ¢€), and express the free energy of the factor model on G,, as the
telescoping sum

no—1

bp=n"" Z E,[log Zric, —log Zritic, ] + n 'E,[log Zrroa, |-

j=0
Since R™@G,, is a d-regular graph on ne vertices, the last term is bounded in absolute value
by ce for some constant ¢ = ¢(d,1). Next, Propn. 3.2 gives

max E,[log Zriq, — log Zritig, | < ®* + En[ max err(t, Ct(RZGn))].

0<j<ng 0<fl<ng
By Propn. 3.3, the last term tends to zero in the limit n — oo followed by t — 0, so
limsup ¢, < (1 — €)P* + ce,

n—0o0

and the result follows by taking e | 0. U

Proof of Lem. 3.1. Writing G = G,, = (V, E), we form the d-regular graph G’ = G, in two
steps: (1) delete edges in G incident to vertices of degree larger than d until none remain to
form the graph G” = (V, E”), then (2) add d — |0v| half-edges to every v € V, and take a
matching on these half-edges to form the d-regular graph G’ = (V| E').

Let U denote the set of all vertices incident to any edge in F\E”, and observe that
(Vo) PN = Zeo ) Zan = (Vin) PN v (0, = o). Since G” has maximum degree < d,
there exists a positive constant ¢ = &(d,¢) > 0 for which vg«(ay = oP) =2Vl Since
clearly |U| < 2|E\E"|, we conclude there exists a positive constant ¢ = ¢(d, ) such that

|log(Zg/Zan)| < ¢|E\E"|. By similar considerations (and adjusting ¢ as needed) we conclude
|log(Zg/Zan)| < co(G), therefore

The first term tends to zero in the limit n — oo, while the second term is upper bounded by
cLE,[G(Gn)] + cE,[|01,]1{|01,,| = L}].

By the uniform sparsity hypothesis this tends to zero in the limit n — oo followed by L — oo,
concluding the proof. 0
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4. THE POTTS FREE ENERGY DENSITY

In this section we prove our main result Thm. 1 giving the free energy density of the ¢-
Potts model on graphs converging locally to the d-regular tree with d even. Let 27 ¢ 7"
denote the set of all convex combinations of the measures hf, h® defined in §1.6.

4.1. Product decomposition of Potts cavity measure. We begin by showing that for
f =0 and B > 0, the Potts model satisfies condition (i) of Thm. 2 with J#& = 7"

Proposition 4.1. For the Potts model with 8 = 0 and B > 0, there is a uniformly bounded
function err(t,x) with lim,_,o limsup,yerr(t,z) = 0 such that the minimal total variation
distance between the cavity measure vy and Mq(F™) is upper bounded by err(t, ((G)) over
all d-regular graphs G.

Proof. On the graph G° = G\I we will consider the Edwards-Sokal measure ES; (see (16)),
with spin marginal v, (the Potts measure) and bond marginal FK,. Condition on the event
that By(I) = Ty, which occurs with probability 1 — (;(G). On this event, By = B,(I) n G°
is simply a collection of d disjoint trees, each isomorphic to T'y;—1 (see Rmk. 1.4).

Fixing s < t, for 7 any bond configuration on G° we shall decompose 1 = (1,,1,,7,) with
71, the bond configuration on G\ By, 1, the bond configuration on B, and 7, the bond

configuration on B;\B; (0 = “outer”, I = “inner”, A = “annuli”). Then
Vo (Qal) = Z FKo (ﬂo,A) Z FKo (HI | ﬂo,A)ES@ (Qal | ﬂ)'
BQ,A ﬂI

We claim that the inner sum remains essentially unaffected if we set 1, to the identically-0
configuration (:

1. For any n,,n, we calculate the ratio

=BICl(y —
FK@(ﬂI |ﬂ07ﬂA) _ ( ) HCG@(IIO,ZIH)U +e (q 1)]
FK&(HI ‘goa ﬂA) o8 HC'GQ(QOJZA,I) [1 + e*B‘Cq(q — 1)]

where (1, ,) is a proportionality constant not involving n,, and %(n) denotes the con-
nected components of 1 which cross between Bs and G\B;. Any such component must
contain at least ¢ — s vertices, and the total number of such components in any 7 is at
most d®. Since B > 0, if we take say s = logt, then the above ratio tends to 1 in the limit
t — oo, uniformly over all 7.

2. Similarly, given any n, let 0I(t) < 0I denote the vertices in ¢I which are joined to G\B;
via the occupied bonds in 1, ,. Then ESa(car |10, 1,,) — ESa(@ar | (os14,) factorizes as

[ESa(gaI(t) ’ﬂO7IZA,I) - ES@(QaI(t) ’£07ﬂA,I>] X H ES@<U1J |£ov ﬂI,A)'
ved\aI (1)
Since B > 0, in the limit ¢t — o0, ESa(as7¢) | o, 1,,) converges to 1if gy, is identically 1,
and converges to 0 otherwise, uniformly over 1. Thus the total variation distance between
ESo(aor = - |10, m4,) and ESa(asr = - | (o, n,,) tends to zero as t — oo, uniformly over 7.



REPLICA SYMMETRY FOR POTTS MODELS ON d-REGULAR GRAPHS 17

Combining the above estimates shows that on the event By(I) = Ty, va(o,;) is well approx-
imated (in total variation distance, for ¢ large) by the measure

V@ Ual Z FKs I.ZOA ZFK@ T ’QovﬂA)E%(UaI |§-O7ZZAI)

HO A ﬂI
= Z FK@(HA)ESG(QM |£O7ﬂA Z FKp ﬂA H ES& Oy |§.OaﬂA)
/N vedl

Each ESy(0, | (o, 1m,) is simply the root marginal of the Potts measure on Td,s with some
boundary conditions, which from (17) must be biased towards 1. It follows (cf. Rmk. 1.4)
that in the limit s = logt — o, the distance between ES;(0, | {,,n,) and ™ will tend to
zero (uniformly over 1,). We therefore conclude

min{||vy — V' |wy 1 V' € My( )} < G(G) + &
with ¢, — 0 as t — oo, implying the result. 0
4.2. Optimization over product measures. We now verify condition (ii) of Thm. 2:
Proposition 4.2. For the Potts model with 3, B = 0, sup{log U™ (h) : h € (")} = &*.

Recall the function U™ = ¥"* /U™ defined in §1.3. The following lemma is proved by
manipulating the BP identity (5), and applies to general factor models.

Lemma 4.3. If h* € 5 then Y™(h,h*,... h*) is constant over h € J for each m.

Proof. Note U¥*(h) equals Zg(h), the partition function on the star graph S = Ty, with
boundary conditions o; ~ h; independently over j € do. Let S’ be S with the edge (0,1)
disconnected: from (5), Zg/(h, h*,..., h*) = z,» regardless of h, while

Zs(h,h*, .. h) = 20 > (0, 0" Wishr.

Similarly, for any m, We™(h, h* ..., h*) equals Zg(h), the partition function on the graph R
consisting of the d/2 disjoint edges with boundary condition A* on all but one vertex which
instead receives boundary condition h. Let R’ be R with the edge incident to that one vertex
disconnected: then Zg/ (h, h*,. h*) does not depend on h, and

Z(h, I, Zo(h, bt 1)
Vhyhy = .
ZR'(hﬂh*a" Zl/} 7 U ZS'(hah*7"'ah*)

Thus it holds for any m that
U™ (h,h*, ... h*) _ (Zs/Zg)(hyh*y ... ,h*) (Zr/Zr)(h*, h*, ... hY)
Un(h* h*, ..., h*)  (Zr/Zr)(h,h*,... h*) (Zs/Zs)(h*, h*, ..., h*)
proving the claim. 0

=1,

Proof of Propn. J.2. Let us reparametrize 7 in terms of the bias b, defined as in (14).
Assume bt < b®, otherwise (27)? is a single point and there is nothing to prove. With an
abuse of notation we write W(b) for the evaluation of ¥ at the product measure h € (27%)4

corresponding to the vector of biases b = (by,...,bq). Then
\IJVX B d "}/b] \I,e,m(b)
HlJrvb qUH(lq_l), i =(1;[(1+7bibj)
J= 77)EM
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where C = (e +q¢—1)/q, v = (¢ —1)(e’ —1)/(¢’ + ¢ — 1) > 0. Both ¥** and pesym™
are affine in each b; (with (by)k.; fixed), so their ratio is maximized at one (or both) of
the endpoints b%,5". We therefore conclude that U™ must be maximized over ()% at a
corner b € {b%, b}

Let b, denote the vector which is 0™ in the first ¢ coordinates, b* in the remaining d — ¢
coordinates. Recalling the assumption bf < b®, we can express

£(0) = log UY*(b,) = log(Age™" + Aje™"),  Aj,a; > 0.
By Jensen’s inequality,

1

log U™ (b,) > mglog T (b,) = £9(0)

where, writing Cser = log(1 4+ vb°b%) for s, s’ € {f,m}, we calculate
00 —1)Cpp + 20(d — £)Cs + (d = £)(d — € — 1)Css
[C42(d/2)] - d(d — 1)
where a;, > 0 (for b < b") using the arithmetic-geometric mean inequality.
If we now consider f = f¥* — f° as a function of / € R, then

Apage®™t — Ajae ¢
f'(0) = OAzeaof . Aiei‘“g — 2a40 — a3
tends to Foo as ¢ — +oo0. Moreover
ApAi(ag + ay)3eloo—a)t
 (Agent + Aje—ail)3
which can have at most one real zero. Thus f’ has at most one inflection point, hence at
most three real zeroes; further, if there are three zeroes then the middle one corresponds to
a local minimum of f. But Lem. 4.3 implies f(0) = f(1) and f(d — 1) = f(d), meaning f’
has zeroes inside the intervals (0,1) and (d — 1,d). This shows that f cannot have a local

fe(g) = = a4€2 + asl + as

£ ( ﬁ) _

(Aoeaoe — Aleiale)

maximum in [1,d — 1], so it is maximized over {0,1,...,d} at 0 or d: thus
sup{log U(h) : h e (™)) = log[W(hE, ..., hY) v W (A", ... A")],
which by Thm. 4 is precisely ®*, concluding the proof. U

Proof of Thm. 1. The lower bound liminf, ¢, > ®* for §, B > 0 was proved in [DMS13].
For B > 0 the matching upper bound limsup, ¢, < ®* follows by combining Thm. 2,
Propn. 4.1, and Propn. 4.2. The result for B = 0 follows by continuity. U

5. LOCAL MAXIMIZERS

In view of the proof of Thm. 3, we expect local maximizers of h of the Bethe rate function ®
to have the following probabilistic interpretation, which is in the spirit of results of [MMS12]:
if G, — 10 Ty, the factor model on G, conditioned to the subspace of configurations with edge
empirical measure close to h should converge locally weakly to the (Bethe) Gibbs measure
corresponding to h. With this motivation in mind, in this section we study stationary
points and local maximizers of the Bethe rate function for the ferromagnetic Potts model.
The results obtained here are independent of the rest of the paper.
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5.1. Local maximizers of the Bethe rate function. We begin with a characterization
of local maximizers of the Bethe rate function in the general (d-regular) setting.

Proposition 5.1. Let ® be the Bethe rate function (9) for a permissive specification 1.
An interior stationary point h of ® is a local maximizer if and only if, for (X,Y) having
(exchangeable) law h,
VarE[p(X,Y) | X] d

Var p(X,Y) 2(d—1)
Proof. Given specification 1, let A* denote the set of symmetric functions § : 22 — R with
suppd < supp, (d,1) = 0, and ||§|| = 1. An interior stationary point h of ® is a local
maximizer if and only if

(05)*@(h +19)y=0 = (d = 1){(6/R)*)r — (d/2){(8/h))n <0 forall §e A" (21)

Taking ¢ = (h + §)/h and rearranging gives condition (20). O

PXy = Sup{ - P 7_é 07 CP(O', OJ) = 90<0—/7 J)} < (20)

Remark. The “symmetric correlation coefficient” pxy measures dependence within the
exchangeable pair (X,Y). (Note pxy is not the classical correlation coefficient between
o(X),o(Y); see e.g. [DKS01] and references therein.) By the standard variance decomposi-
tion Var ¢ = Var(E[p|X]) + E[Var(¢|X)], we have 0 < pxy < 1, with pxy = 1if and only if
Y = f(X) for some deterministic function f (which by exchangeability must be involutive).
For X and Y independent, Hoeffding’s decomposition

p=¢+E[p|X]+E[p|Y]-Ep
(with E[@ | X] =0=E[@|Y]) gives
E[Var(p| X)] = El( — B X))’ N
=E[¢°] + 2E[@ - (Elp [ Y] — Ep)] + E[(E[p | Y] — Ep)*] = E[¢°] + Var(E[¢ [ Y]),
where the cross term vanishes using E[@|Y] = 0. This implies pxy < 1/2; and in fact

pxy = 1/2 with supremum achieved by (o, 0’) of form ¢, + ¢,,. We do not know of an
argument to show pxy = 1/2 for general exchangeable pairs (X,Y).

5.2. Fixed points of the Potts Bethe recursion. Rearranging (5), we see that an interior
point h of 57 belongs to s~ if and only if

d—1

w}(LU) (2 (o, (ﬂ)ha/) takes the same value z, for all 0 € 2. (22)
We now classify the fixed points for the ferromagnetic Potts model. If 5 = 0 the unique
solution is given by taking hy/hy = -+ = hy/h, = €P, so assume from now on that 8 > 0.
We then reparametrize m = e? > 1, 0 = 1/(e® — 1) > 0, so that (22) simplifies to

mF(h) = F(hy) =...=F(h)) = z,, F(a)=a""(2/0+1)""
With h° = 6/(d — 2), we observe that the restriction F_. = F| e is monotone decreasing
while the restriction F, = F|p0 1] is monotone increasing, so clearly [{hs, ..., hy}| < 2. More

precisely, we have the following classification:

Definition 5.2. Say that h € 7 is an {-type solution if among the entries ho, ..., hy it has
¢ — 1 coordinates equal to p, = (F, ) '(23), and ¢ — £ coordinates equal to p_ = (F_)"!(z3,).
We further subdivide the ¢-type solutions into ¢ -type or /_-type according to whether h;
equals Q. = (F,)"L(z/m) or Q_ = (F_)"}(z,/m).
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This terminology degenerates in some cases, in particular when m = 1: in this case Q1+ = p4,
so the ¢, -type solutions coincide (up to permuting the labels) with (¢ + 1)_-type solutions
for 1 < ¢ < ¢, and the only 1_- or g,-type solution is the uniform distribution on [¢].

Proposition 5.3. For the Potts model with = 1/(e® —1) > 0, m = e = 1 (both finite),
every fized point h € F* is an {-type solution for some 1 < ¢ < q. Further

(a) If h° = 0/(d —2) = 1 then all solutions are 1_-type.
For 0 =2, if mF(h°) = F|[1/({ — 1)] then there are no solutions of type = .

(b) If gh® < 1, there are no 1_-type solutions; but for each € = 2 there exists my(0) > 1 such
that both (- and {_-type solutions exist for all 1 < m < my(6).

Proof. 1t is clear from the preceding discussion that every h € 2 is an (-type solution for
some 1 < ¢ < ¢. Fixed points of (15) correspond to 1- or g-type solutions.

(a) If h° = 1 then F = F_ is injective on (0, 1] so necessarily ¢ = 1 and solutions are 1_-type.
If h € 7* has £ = 2 then, since min, h, > 0 while max, h, = p,, necessarily p, < 1/({—1).
Thus for F(Q) = F(py)/m to have any solution we must have mF'(h°) < F[1/({ —1)].

(b) A 1_-type solution must have max, h, < h°, so if gh® < 1 then no such solution exists.
For ¢ > 2 and s € {#}, the function

g*(pim) = (F,) 7 [F(p)/m] + (( = D)(F:) "' [F(p)] + (¢ — O)(F-)"'[F(p)]
is well-defined for py(m) < p < 1 where po(m) = (Fy) " [mF(h°)] is less than 1 for small
enough m > 1, due to the assumption gh® < 1. Note

g®(p;m) >0 —1=>1 while hlﬁ g (po(m);m) = qh® < 1.
It follows by continuity that if £ > 2 and ¢h® < 1 then g’ (p;m) = 1 for some py(m) < p < 1,
giving an {s-type solution as claimed. U

5.3. Local maximizers for the Potts Bethe rate function. We next study which of
the stationary points classified in Propn. 5.3 correspond to local maximizers for ®.

Proposition 5.4. In the setting of Propn. 5.5,

(a) Solutions of type ¢ > 2 are never local maximizers.
(b) For m = 1,0 > 0 both sufficiently small, there ezist both 1, -type and 2_-type solutions
which are strict local maximizers, with strictly negative-definite Hessians.

Proof. (a) Let h € A be the stationary point of ® corresponding to h € J* via (10): then
h(c,0')  he(0+1{c =0'})

he 0+ h,
We will apply the correlation criterion (20) with (0, 0’) = @, + @ If (o), = 0, then

/ 9 ho ho-
E[¢Y|X:U]:Z¢‘7lh(g |U): 0+ h <90>h+9_{_—h90t7:709007 VUEH-Fh .

h(c'|o) =

Thus E[¢(X,Y) | X] = (1 4+ vx)¢x, and (20) becomes

2(Epx)? = E[(l + 7X)(¢X)2(Ci_cil)+_l]
2hX - ho] B ZU h0<1 + 'Yg)(hg _ ho)((p(T)Q

- 23
0+ hx 0+ |h|? (23)

— E[(1+7x)(px)
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(using hy = hy(0 + hy)/(6 + |h]?) for the last identity). Now suppose without loss that
hy = ... = hg if his an (-type solution with ¢ > 2, then ¢, = 1{c = 2} — 1{o = 3} clearly
violates (23), so h cannot be a local maximizer of ®.
(b) Let m = 1 and 6 > 0 sufficiently small so that a 1,-type (equivalently, up to permuting
the labels, 2_-type) solution h = (Q4,p_,...,p_) exists, given by taking the log-likelihood
ratio r = log(Q, /p_) to be the maximal fixed point of the mapping BP of (15). For d > 3
and 0 < € < 1 we calculate that

BR[(d— 1 - )] > (d— 1)(5 — logq) > (d— 1~ )f for ¢ > (d— 1)logq,
so crudely we have r > (3/2) for all § > 2(d — 1)logq. Let h € A be the stationary point
corresponding to this fixed point: recalling (21), for 6 € A* we calculate

(/M) _ o(1)? N Doe1 0(0)’ < 6(1) N Dpe1 0(0)’
Zh Qi(ePQy +(¢—Vp-)  p-(Qr +(e? +q—2)p ) efQ% Qip—
(O/h)*n _ 8(1,1)" 220;&1 (1,0)* . S rp1 0(0,0)’
o Qe Q4p- efp? '
Since p_ < e~ ®2BQ, for sufficiently large 3,

egpz e 5 2
lim ——((§/h)*)2 =0, liminf

{(6/h)*) 2(500 ,

o,0’#1

so for any fixed € > 0 we have (0,)?*®(h + nd)|,—0 < 0 uniformly over all § € A* satisfying
(q—1)? Yooz 0(0,0 )> = €2 once 3 is sufficiently large (depending on €). Suppose instead
(¢ —=1)* 2 541 9(0, 0')? < €%: by Cauchy-Schwarz Yooz 0(0,0")] <€ s0

55 oetimsup L 2(a — 1)((8/B) 5 — dl(8/))n]

Zh
—1) > 6(0)? —2d Y 8(1,0)* <2(d— 1) Y [|8(1,0)| + €]* — 2d ¥ 6(1,0)°
o#1l o#1 o#1 o#1l

231 6(L,0) + 2(d - 1)[26 S 8(L,0)] + (g - 1)62].

o#1 o#1

On the other hand, § € A* implies
€2 1/2
2’26(1,0)’ —16(1,1) + ¢ = [6(1,1)] — € > [1—225 (1,0) ——1)2] p

o#l o#l (a -

so by choosing € > 0 sufficiently small we can guarantee that for 5 large enough we will have
(0,)*®(h+nd)|,—0 < 0 uniformly over all § € AT, implying that h is a strict local maximizer
of ® with strictly negative-definite Hessian.

This concludes the proof for m = 1, and the conclusion for m > 1 sufficiently small follows
by a perturbative argument: arguing similarly as in the proof of Propn. 5.3b, for 1 < m < my
the equations
gt (p) = (Fy) " [F(p)/m] + (¢ —1)p =1,

g’ (p) = (F_)7'[F(p)/m] + (FL) ' [F(p)]l + (¢ —2)p =1

have solutions p~*(m), p*~ (m), corresponding to 1+ -type and 2_-type solutions respectively,
which are continuous in m with initial values p'*(1) = p?>~(1) = p_ corresponding to the
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solution considered above at m = 1. For sufficiently small m, it follows by continuity that
the Hessians at the stationary points h'*(m), h?>~(m) corresponding to p'*(m), p?>~ (m) will

be strictly negative-definite, implying strict local maximizers as claimed. 0

Remark 5.5. Related to the study of local maxima is the question of the local stability
of the Bethe recursion. For the Potts specification (2), the linear (differential) mapping
D), = DBP(h) defined on the space {6 : >, &, = 0} by

BP(h + nd) — BP(h)

n
can be explicitly diagonalized when h € 77* and shown to have all eigenvalues positive, with
maximal eigenvalue greater than 1 at /-type solutions with ¢ > 2 and at 2,-type solutions.
At a 2_-type solution (assuming m > 1, so it is not also a 1 -type solution) the maximal
eigenvalue is less than 1 if and only if
2 2 2
jt d—2 Q~ pZ
> + +(q—2)———. 24

However, if A is not the uniform measure on [¢] then Dy, is not symmetric and so does not have
orthonormal eigenbasis, so having all eigenvalues less than 1 need not imply contractivity of
Dy, Tt is not clear how to relate (24) to the local stability of the non-linear map BP.

n—0
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