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Abstract

We prove a large deviations principle (LDP) for systems of diffusions (particles)
interacting through their ranks when the number of particles tends to infinity.
We show that the limiting particle density is given by the unique solution of
the appropriate McKean-Vlasov equation and that the corresponding cumulative
distribution function evolves according to a nondegenerate generalized porous
medium equation with convection. The large deviations rate function is provided
in explicit form. This is the first instance of an LDP for interacting diffusions
where the interaction occurs both through the drift and the diffusion coefficients
and where the rate function can be given explicitly. In the course of the proof,
we obtain new regularity results for tilted versions of such a generalized porous
medium equation. © 2016 Wiley Periodicals, Inc.

1 Introduction
Systems of diffusion processes (particles) interacting through their ranks have

recently received much attention. For a fixed number of particlesN 2 N, these are
given by the unique weak solution of the stochastic differential system (SDS),

dXi .t/ D
NX
jD1

bj 1fXi .t/DX.j/.t/gdt

C

NX
jD1

�j 1fXi .t/DX.j/.t/gdWi .t/; i D 1; : : : ; N;

(1.1)
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where b1; b2; : : : ; bN are arbitrary real constants, �1; �2; : : : ; �N are arbitrary pos-
itive constants, W1; W2; : : : ; WN are independent standard Brownian motions, and
X.1/.t/ � X.2/.t/ � � � � � X.N/.t/ are the ordered particles at time t . In this pa-
per we study the behavior of the solution to (1.1) asN becomes large in the regime
when jbjC1 � bj j C j�2jC1 � �

2
j j D O.N

�1/ for all j (see Assumption 1.2 below
for the details). In other words, the drift and the diffusion coefficients of a particle
change slowly as it changes its rank in the particle system.

The existence and uniqueness of the weak solution to (1.1) were shown in the
work [3], which was motivated by questions in filtering theory. The system (1.1)
has also reappeared in the context of stochastic portfolio theory under the name
first-order market model (see the book [14] and the survey article [23]). In the
latter context, our choice of the regime jbjC1 � bj j C j�2jC1 � �

2
j j D O.N�1/

agrees with the economic intuition that a small change of a company’s rank cannot
lead to a large jump in the growth rate and the volatility coefficient of its mar-
ket capitalization. Due to its central role in the analysis of capital distributions in
financial markets and long-term portfolio performance therein, as well as its in-
triguing mathematical features, the ergodicity and sample path properties of this
model have undergone a detailed analysis in the case where the number of parti-
cles is fixed (see [6, 7, 18–20]). Moreover, concentration properties of the solution
to (1.1) for large values of N have been studied in [34], and an analogous infinite
particle system has been constructed and analyzed in [33].

In [36] it was observed that the SDS (1.1) can be rewritten as

dXi .t/ D b
�
F�N .t/.Xi .t//

�
dt

C �
�
F�N .t/.Xi .t//

�
dWi .t/; i D 1; 2; : : : ; N;

(1.2)

where �N .t/ D 1
N

PN
iD1 ıXi .t/ is the F�N .t/ is the corresponding cumulative dis-

tribution function (CDF), and b W Œ0; 1� ! R, � W Œ0; 1� ! .0;1/ are functions
satisfying b.j=N / D bj , �.j=N / D �j for all j D 1; 2; : : : ; N . The represen-
tation gives rise to questions on the large-N behavior of the empirical measure in
(1.2), where the mathematical challenge is due to the discontinuity of the diffusion
coefficients in (1.2). A law of large numbers (LLN) for �N .t/ is obtained in [36]
for nondecreasing i 7! Xi .0/, with fXi .0/ � X1.0/g chosen according to the
stationary distribution of the process of spacings between consecutively ordered
particles in (1.2) (in particular, assuming that b and � are such that a stationary
distribution exists). In this case, it was shown that the limiting particle measure
path t 7! 
.t/.�/ satisfies the McKean-Vlasov equation

(1.3)
Z
R

f d
.t/ �
Z
R

f d
.0/ D

Z t

0

ds
Z
R

�
b.F
.s/.�//f

0
C
1

2
�.F
.s/.�//

2f 00
�

d
.s/
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for all Schwartz functions x 7! f .x/ and any t � 0 (hereafter d
.s/ is shorthand
for integration with respect to the probability measure 
.s/.�/ on R at the fixed time
s). Further, the corresponding CDF-path R.
/.t; x/ WD F
.t/.x/ evolves according
to the nondegenerate generalized porous medium equation with convection (see
[37] and the references therein for a thorough treatment),

(1.4) Rt D .†.R//xx � .�.R//x;

where †.r/ D
R r
0
1
2
�2.u/du and �.r/ D

R r
0 b.u/du.

In this paper, we establish a large deviations principle (LDP) for the sequence
f�N W N 2 Ng of paths f�N .t/ W t 2 Œ0; T �g of empirical measures, where T > 0

is arbitrary but fixed throughout. Among other things, this LDP implies the LLN
for f�N W N 2 Ng. Such LLN and the LDP upper bound are shown under the mild
regularity Assumption 1.2 on the functions b, � and the initial empirical measures
f�N .0/ W N 2 Ng (dispensing of the stationarity assumption on the process of
spacings, which plays a crucial role in [36]). Our next definition is useful for
stating Assumption 1.2.

DEFINITION 1.1. LetM1.R/ denote the space of Borel probability measures on R,
endowed with the Lévy distance metric

dL.˛1; ˛2/ WD inff� > 0 j ˛1.O/ � ˛2.O�/C �;

˛2.O/ � ˛1.O�/C � 8 open O � Rg

(where O� stands for the �-neighborhood of O in R). Then, for � 2 Œ0; 1� let
M
.�/
1 .R/ denote the subset of all � 2 M1.R/ such that

R
R jxj

1C�d� < 1 and
d�
dx 2 L

q0.R/ for some q0 > 1.

Assumption 1.2. �j D �.j=N / and bj D b.j=N /, where:

(a) The function A WD 1
2
�2 is uniformly bounded below by some a > 0, and A0

is bounded on Œ0; 1�.
(b) The function b.�/ is Lipschitz-continuous on Œ0; 1�.
(c) As N ! 1 the deterministic initial empirical measures f�N .0/g converge

weakly to some �0 2M
.�?/
1 .R/, �? 2 .0; 1�, and

sup
N2N

Z
R

jxj1C�? d�N .0/ <1:

(d) The function A0 is Lipschitz-continuous on Œ0; 1�.

Throughout the paper we let C D C.Œ0; T �;M1.R// stand for the space of
continuous functions from Œ0; T � to M1.R/ endowed with the metric

(1.5) d.
1.�/; 
2.�// D sup
t2Œ0;T �

dL.
1.t/; 
2.t//:



4 A. DEMBO ET AL.

Further, throughout we adopt the convention that 0
0
D 0, and identify each 
 2 C

with the corresponding CDF-path R.
/.t; x/ WD F
.t/.x/. The following spaces of
functions then play a major role in our LDP on C .

DEFINITION 1.3. Let �S denote the space of functions g on RT WD Œ0; T ��R that
are infinitely differentiable and such that, for all t 2 Œ0; T �, g.t; � / is a Schwartz
function on R. Next, let

zA WD f
 2 C W R.
/ 2 Cb.RT /; 
.0/ 2M
.0/
1 .R/;

t 7!
R

R g.t; �/d
.t/ abs. cont. on Œ0; T � 8g 2 �S g;
and for each � 2 .0; 1�, � 2M .0/

1 .R/, define its subset

(1.6) A�;� WD f
 2 zA W 
.0/ D �;
R

RT
jxj1C� d
.t/dt <1g:

Further, we use

(1.7)
Fq WD

n
R D R.
/ W 
 2 C ; Rt ; Rxx 2 L

q.RT /; Rx 2 L
3.RT /;

R2t
Rx
;
R2xx
Rx
2 L1.RT /

o
with F WD F3=2 and

(1.8) zJ .
/ WD

8<:14



Rt�.A.R/Rx/xCb.R/Rx

.A.R/Rx/1=2




2
L2.RT /

if 
 2 zA ; R D R.
/ 2 F ;

1 otherwise;

with J�;�.
/ defined as in (1.8) except for replacing there zA by the smaller A�;�.

Our main result then reads as follows:

THEOREM 1.4. Under Assumption 1.2 with �? D 1, the sequence f�N : N 2
Ng satisfies the LDP on C with scale N and the good rate function J1;�0.�/ of
Definition 1.3.

Remark 1.5. As shown in Proposition 2.6 (and Corollary 2.3), the exponential
tightness of f�N g and the LDP upper bound of Theorem 1.4 with rate J�?;�0.�/
apply for any value of �? > 0 in Assumption 1.2(c) and do not require part (d) of
Assumption 1.2.

In view of the preceding remark we have the following LLN.

COROLLARY 1.6. Under Assumption 1.2(a)–(c) for some �? 2 .0; 1�, the sequence
f�N W N 2 Ng converges almost surely to the unique path 
? 2 A�?;�0 for which
R.
?/ 2 F is a generalized solution of the Cauchy problem

(1.9) Rt D .A.R/Rx/x � b.R/Rx; R.0; � / D F�0.�/:
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PROOF. Setting J WD J�?;�0 , recall Remark 1.5 that the exponentially tight
f�N g satisfy the LDP upper bound in the metric space .C ; d / with some rate func-
tion I�?;�0.�/ � J.�/. Necessarily, I�?;�0 has compact, nonempty, level sets and in
particular J�1.0/ D f
 2 C W J.
/ D 0g is nonempty (and precompact). Con-
sidering the LDP upper bound for the complement of any finite ı-cover of J�1.0/,
we further deduce by the first Borel-Cantelli lemma that a.s. d.�N ; J�1.0//! 0.
From the explicit formula (1.8) we know that J�1.0/ � A�?;�0 , and furthermore,
to each 
 2 J�1.0/ corresponds R.
/ 2 F , which is a nonnegative continuous
bounded generalized solution of the problem (1.9) in the sense of [17, def. 4].
Recall [17, theorem 4] that such a generalized solution is unique. Consequently,
J�1.0/ D f
?g is a single point to which �N converges a.s. when N !1. �

In [8], the authors prove an LDP for systems of diffusions with the same con-
stant diffusion coefficient, where each drift coefficient is a continuous function of
the value of the diffusion and the empirical measure of the whole system. In this
context the (local) LDP is established by a clever application of Girsanov’s the-
orem, which allows one to move from the system of interacting diffusions to the
corresponding system of independent diffusions (in the event that the path of em-
pirical measures is near a deterministic path of probability measures). Such an
approach is not viable in our case because of the interaction through the diffu-
sion coefficients in (1.2). Moreover, the discontinuity of the drift and the diffusion
coefficients presents an additional challenge. Even on the level of the LLN as in
Corollary 1.6, previous works had to assume that there is no interaction through the
diffusions coefficients (see [4, 5, 21] and the references therein), or be restricted to
special initial conditions (see [36]). We overcome these challenges but remark that
our analysis relies on the particular form of the drift and the diffusion coefficients
in (1.2).

A crucial part of the proof of Theorem 1.4 is devoted to the study of generalized
solutions to porous medium equations with tilt

(1.10) Rt D .A.R/Rx/x C hA.R/Rx :

The following regularity result, which we need in the proof of Theorem 1.4, is also
of independent interest.

THEOREM 1.7. Let R 2 Cb.RT / be such that, for every t 2 Œ0; T �, the function
R.t; � / is the CDF of a probability measure 
.t/. Suppose that R is a general-
ized solution to (1.10) with initial condition R.0; � / D F�.�/, where A.�/ satisfies
Assumption 1.2(a), � 2M .0/

1 .R/, and h is a function on RT such that

(1.11)
Z

RT

h2.t; x/d
.t/dt <1:

If, in addition, 
.�/ satisfies the moment condition (1.6) for some � > 0, then 
 2
A�;� and R 2 Fq of (1.7) for all 6

5
� q � 3

2
.
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2 Outline: Proofs of Theorems 1.4 and 1.7
In this section we establish Theorems 1.4 and 1.7 as consequences of Proposi-

tions 2.2 and 2.5–2.7. The latter are in turn proved in the following five sections, in
the order in which they are stated here. We note in passing that the proofs of Propo-
sitions 2.2 and 2.5 are of analytic nature (relying for proving Proposition 2.2 on
results from [25, 26, 29] about parabolic equations with non-smooth coefficients),
whereas those of Propositions 2.6 and 2.7 are mostly probabilistic, involving tools
from large deviations theory and stochastic analysis. More precisely, the local large
deviations upper bound of Proposition 2.6 is established by integrating suitable test
functions against �N , proving a Freidlin-Wentzell-type local large deviations upper
bound for the resulting processes and optimizing over such test functions; the local
large deviations lower bound of Proposition 2.7 is shown via a tilting argument that
relies on an appropriate Girsanov change of measure.

We proceed with a few notations and definitions that are used throughout this
paper. First, we write m for the Lebesgue measure on RT D Œ0; T � � R, .˛; f /
for

R
R f d˛, any f in the space of continuous bounded functions Cb.R/ and any

˛ 2M1.R/, with .˛; f /.s/ D
R

R f .s; � /d˛.s; � /, in case of s 7! f .s; � / 2 Cb.R/
and s 7! ˛.s; � / 2 M1.R/ (or more generally, whenever f .s; � / is integrable with
respect to ˛.s; � /). We further let �Sx D fgx W g 2 �S g denote the space of spatial
derivatives of test functions from �S .

DEFINITION 2.1. Setting

(2.1) R
g D gt C b.R
.
//gx C A.R

.
//gxx;

with the functional

(2.2) ˆ
 .t; g/ D .
; g/.t/ � .
; g/.0/ �

Z t

0

.
;R
g/.s/ds

on �S , ˆ
 .g/ WD ˆ
 .T; g/, and inner product

(2.3) .f; g/
 D

Z
RT

fx gx A.R
.
//d
.t/dt

on �S , we consider the (rate) functions on C given by

(2.4) I�;�.
/ D

(
sup

g2 �S Œˆ
 .g/ � .g; g/
 �; 
 2 A�;�;

1 otherwise:

Theorem 1.7 is a direct consequence of the following proposition (which is also
key in proving Theorem 1.4).

PROPOSITION 2.2. Suppose Assumption 1.2(a) holds and the function b.�/ is uni-
formly bounded. If I�;�.
/ < 1 for some � > 0 and � 2 M

.0/
1 .R/, then

R.
/ 2 Fq for all 6
5
� q � 3

2
. Namely, R.
/ D R such that
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(A) Rx 2 L3.RT /,
(B) Rt ; Rxx 2 Lq.RT / for all 6

5
� q � 3

2
,

(C)
R

RT
R2xx
Rx

dm <1,
R

RT
R2t
Rx

dm <1.

PROOF OF THEOREM 1.7. After integration by parts in space, we see that hav-
ing R D R.
/ as a generalized solution of (1.10) is equivalent to

(2.5) ˆ
 .t; g/ D �

Z t

0

.
; b.R/gx C hA.R/gx/.s/ds

for any g 2 �S and t 2 Œ0; T �. In particular, upon comparing (2.2) and (2.5),
we deduce that t 7! .
; g/.t/ is absolutely continuous for any g 2 �S , and thus

 2 A�;� (for R 2 Cb.RT /, and the moment and initial conditions have all been
assumed in Theorem 1.7). Further, taking here b � 0 without loss of generality,
we see that for 
 as in Theorem 1.7,

I�;�.
/ D sup
f 2 �Sx

� Z
RT

.�hA.R/f � A.R/f 2/d
.t/dt
�

� sup
f 2L2.RT ; d
.t/dt/

� Z
RT

.�hA.R/f � A.R/f 2/d
.t/dt
�
:

The latter supremum is attained for f D �1
2
h and its value is finite due to our

assumption (1.11). Consequently, in this case I�;�.
/ < 1 and by Proposition
2.2 such R D R.
/ satisfies the regularity properties (1.7) for all 6

5
� q � 3

2
, as

claimed. �

We start the proof of Theorem 1.4 by establishing the following corollary of
Proposition 2.2.

COROLLARY 2.3. Suppose A.�/ satisfies Assumption 1.2(a), � 2 M .0/
1 .R/, and

b.�/ is uniformly bounded. If I�;�.
/ <1, then J�;�.
/ D I�;�.
/. In particular,
J�;�.
/ � I�;�.
/ for all 
 2 C .

PROOF. Fixing 
 2 A�;� with

I�;�.
/ D sup
g2 �S Œˆ
 .g/ � .g; g/
 � <1;

consider the Hilbert space H given by identifying and completing �S under the
seminorm corresponding to the inner product . � ; � /
 of (2.3). By scaling, the lin-
ear functionalˆ
 .�/ is bounded on �S by 2

p
I�;�.
/ times this seminorm, and with

A.�/ uniformly bounded below, if .g; g/
 D 0 then by (2.1)–(2.3) alsoˆ
 .g/ D 0.
Hence, there exists a unique bounded linear functional ˆ
 on H which coincides
with ˆ
 on �S . Now, by the Riesz representation theorem, there is a unique ele-
ment zh 2 H, which satisfies ˆ
 .g/ D .zh; g/
 for all g 2 H. Combining this with
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the fact that �S is by definition dense in H, we obtain that

(2.6) I�;�.
/ D sup
g2H

�
ˆ
 .g/ � .g; g/


�
D sup
g2H

�
.zh; g/
 � .g; g/


�
D
1

4
.zh; zh/
 :

Furthermore, by the definition of zh and ˆ
 , we have that zhx 2 L2.RT ; d
.t/dt /
satisfies

(2.7) ˆ
 .t; g/ D

Z t

0

.
; A.R.
//zhxgx/.s/ds

for t D T and any g 2 �S . In particular, considering Schwartz functions g sup-
ported on Rt we have that (2.7) also applies for any t 2 Œ0; T �. Comparing this
with (2.5) we deduce that R D R.
/ is a generalized solution of the PDE (1.10) for

(2.8) h D �zhx �
b.R/

A.R/
:

By the assumed boundedness of b.�/
A.�/

, clearly h 2 L2.RT ; d
.t/dt /. By Theorem
1.7, this implies in turn that Rt , Rxx , and the L1.RT / density Rx are elements
of L3=2.RT / and, moreover, the functions RtR

�1=2
x , R3=2x , and RxxR

�1=2
x are

elements of L2.RT /. Thus, the identity

(2.9) h.A.R/Rx/
1=2
D
Rt � .A.R/Rx/x

.A.R/Rx/1=2

holds in L2.RT /. Finally, putting (2.9), (2.8), and (2.6) together, we end up with

I�;�.
/ D
1

4



zhx�A.R.
//R.
/x �1=2


L2.RT /

D J�;�.
/

of (1.8), as claimed. �

Corollary 2.3 allows us to replace the function I1;�0.�/ of the large deviations
upper bound for Theorem 1.4 (see (2.13)), by J1;�0.�/ of the corresponding lower
bound (see Proposition 2.7). The task of proving such a lower bound is further
simplified thanks to the next proposition, for which we first introduce some relevant
notations.

DEFINITION 2.4. Let G denote the subset of f
 2 C W zJ .
/ < 1g for which
R WD R.
/ 2 C1

b
.RT /, Rx is strictly positive, and (1.10) holds pointwise for

some h 2 Cb.RT / with x 7! h.t; x/ uniformly Lipschitz-continuous on RT .

PROPOSITION 2.5. Suppose that Assumption 1.2(a), (b), and (d) hold, and that
J1;�.
/ < 1 for some � 2 M .1/

1 .R/. Then there exist 
`;� D .1 � `�1/
� C

`�1b�� 2 G for some y�� 2M .0/
1 .R/ and 
� 2 C such that

sup
�

Z
R

jxj2 d
�.0/ <1;(2.10)
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lim
�!0

lim sup
`!1

d.
`;�; 
/ D 0;(2.11)

lim sup
�!0

lim sup
`!1

zJ .
`;�/ D J1;�.
/ <1:(2.12)

We proceed to state our basic local large deviations bounds.

PROPOSITION 2.6. With B.
; ı/ denoting the open ball of radius ı > 0 centered at
arbitrary 
 2 C , under Assumption 1.2(a)–(c) we have the local large deviations
upper bound

(2.13) lim
ı#0

lim sup
N!1

1

N
log P .�N 2 B.
; ı// � �I�?;�0.
/:

Moreover, the sequence f�N W N 2 Ng is exponentially tight in the sense that for
any M <1 there exists a compact set KM � C for which

(2.14) lim sup
N!1

1

N
log P .�N … KM / � �M:

PROPOSITION 2.7. Under Assumption 1.2(a)–(c) with �? D 1 and f
`;�g � G of
Proposition 2.5:

(a) Assumption 1.2(c) holds for �`;�0 D 

`;�.0/, �? D 0, and deterministic initial

empirical measures f�N;`;�.0/ W N 2 Ng such that

(2.15) lim sup
�!0

lim sup
`!1

lim sup
N!1

d.�N ; �N;`;�/ D 0:

(b) The corresponding local large deviations lower bound

(2.16) lim inf
N!1

1

N
log P .�N;`;� 2 B.
`;�; ı// � � zJ .
`;�/

holds for any `, �; ı > 0.

PROOF OF THEOREM 1.4. From [10, theorem 4.1.11] and [10, lemma 1.2.18]
we conclude that Theorem 1.4 follows once we show that for J D J1;�0 and any

 2 C ,

lim
ı#0

lim sup
N!1

1

N
log P .�N 2 B.
; ı// � �J.
/;(2.17)

lim
ı#0

lim inf
N!1

1

N
log P .�N 2 B.
; ı// � �J.
/;(2.18)

and that the sequence f�N W N 2 Ng is exponentially tight in the sense of (2.14).
To this end, note that f�N ; N 2 Ng is exponentially tight (by Proposition 2.6),
and the upper bound (2.17) is a consequence of Proposition 2.6 and Corollary 2.3.
Next, it clearly suffices to establish the lower bound (2.18) when J.
/ < 1. To
this end, fixing such 
 and 
`;� 2 G as in Proposition 2.5 (where � D �0), we
know from part (a) of Proposition 2.7 and (2.11) that, for any ı > 0, � � �0.ı/,
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` � `0.�; ı/, if �N;`;� 2 B.
`;�; ı/, then �N 2 B.
; 3ı/ for all N large enough.
From part (b) of Proposition 2.7 we deduce that then

lim inf
N!1

1

N
log P .�N 2 B.
; 3ı// � � zJ .
`;�/:

So using (2.12) we get (2.18) by taking `!1, then � # 0, and finally ı # 0. �

3 Proof of Proposition 2.2(A) and (B)

Throughout this section, A.�/ satisfies Assumption 1.2(a), and the function b.�/
is uniformly bounded. Then, fixing � > 0, � 2 M1.R/, and R D R.
/ for

 2 C with I�;�.
/ <1, we prove Proposition 2.2(A) in a series of three lemmas,
starting with Lemma 3.1 by showing that Rx 2 L3=2.RT /, which we improve in
Lemma 3.2 to Lp estimates on Rx for all 3

2
� p < 3. Finally, Lemma 3.3 estab-

lishes the uniform boundedness of the corresponding norms when � 2 M .0/
1 .R/,

resulting with Rx 2 L3.RT /.

LEMMA 3.1. If R D R.
/ and I�;�.
/ D I <1 for some � 2M1.R/, then:

(a) The function a WD A.R/ is uniformly continuous on RT .
(b) The measure d
.t/dt on RT has a density with respect to the Lebesgue

measure on RT , whose L2 norm restricted to any strip Sn;r WD Œ0; T � �

Œn � r
4
; n C r

4
� is bounded by a constant C.T; I; r/ < 1 (independent of

n 2 Z). In particular, this density is locally square integrable, so that the
weak derivative Rx exists as a function in L2

loc
.RT /.

(c) The weak derivative Rx is an element of L3=2.RT /.

PROOF.
(a) Recall that A.�/ is assumed to be Lipschitz, so it suffices to show uniform

continuity of R D R.
/ on RT . We further assumed that 
 2 A�;�, hence R 2
Cb.RT / is uniformly continuous on compact sets. In addition, the continuity of
t 7! 
.t/ with respect to the topology of weak convergence in M1.R/ implies
that the image f
.t/gt2Œ0;T � of the compact Œ0; T � is compact in M1.R/, hence by
Prokhorov’s theorem, uniformly tight. Consequently, for every ˛ > 0, there exists
finite M DM˛ such that

(3.1) sup
t2Œ0;T �;
x�M

max.R.t;�x/; 1 �R.t; x// < ˛;

extending the uniform continuity of R to all of RT .
(b) Setting hereafter Sn D Sn;2, it suffices to show that the inequality

(3.2)
Z
Sn

 .t; x/d
.t/dt � C.T; I /k k2
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holds for some constant C.T; I / < 1, all n 2 Z, and any continuous  W Sn !
RC. Indeed, this implies the existence of the Radon-Nikodym derivative Rx D
d
.t/dt=dm on RT , whose L2.Sn/ norm is bounded by C.T; I / (by the same
argument we used en route to (2.6)). Turning to proving (3.2), by definition of
I�;�.
/ and the identity inf�>0f�y2 C ��1´2g D 2jy´j, we have that for C1 D
2.TIkAk1/

1=2 finite, a.t; x/ WD A.R.t; x//, and any g 2 �S ,

(3.3) C1kgxk1 � 2 I
1=2

�Z
RT

.gx/
2a.t; x/d
.t/dt

�1=2
� ˆ
 .g/:

Considering first n D 0, we use [25, theorem 2] (taking there d D 1 and f .t; x/ WD
 .T � t; x/). It provides a universal finite constant C2 and space-time kernels
k�.t; x/ D ��2�.t=�/�.x=�/, � > 0, for some infinitely differentiable probability
density �.�/ of compact support, with the following property:

For any continuous  W S0 7! RC there exists bounded mea-
surable ´ W RT 7! .�1; 0� (depending on  ), nondecreasing in
t , and supported on a larger strip S0;4 within which it is convex
in x such that for any � > 0 small enough, the smooth functions
 � D  � k� and ´� D ´ � k� satisfy on the intermediate strip
S0;3 the inequalities

8c � 0 W c1=2 � � C2
�
´�t C c ´

�
xx

�
;(3.4)

1

2
j´�xj � �´

�
� C2 k k2:(3.5)

In the preceding, the compact support of ´ is specified in the proof of [25, theo-
rem 2] after [25, display (29)].

Picking a Œ0; 1�-valued truncation function � 2 �S , supported on S0;3 with
� � 1 on S0;2, we note that for each � > 0 as above, the nonnegative function
g D �´�� is in �S , supported on S0;3 such that by (3.5) both kgk1 and kgxk1
are bounded by C3k k2 (for the universal constant C3 D .2C k�xk1/C2). Con-
sequently, applying the bound (3.3) for such choice of g, we deduce that

C1C3k k2 � ˆ
 .g/ � �

Z
S0;3

.gt C agxx/d
.t/dt

� T kb.R/k1kgxk1 � kg.0; � /k1:

Next, with �t , �x , and �xx uniformly bounded by some universal constant C4,
it follows from Leibniz’s rule and (3.5) that

j.gt C agxx/C .´
�
t C a´

�
xx/�j D j´

�.�t C a�xx/C 2a�x´
�
xj

� C2C4.1C 5kak1/k k2;
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out of which we deduce by simple algebra that

(3.6) C5k k2 �

Z
S0;3

.´�t C a´
�
xx/� d
.t/dt

for finite C5 depending only on T , kbk1, kAk1, and the constants Ci , i D
1; : : : ; 4. With ´ nondecreasing in t , so are ´� D ´ � k�. Furthermore, as �.�/
has compact support, the convexity of ´ in x within S0;4 implies that ´� is convex
in x on S0;3 provided that � > 0 is small enough. Thus, both ´�t and ´�xx are non-
negative, so considering (3.4) for the strictly positive c D a of Assumption 1.2(a)
and recalling that � � 1 on S0 D S0;2 (with � � 0 elsewhere), we have from (3.6)
that

C2C5k k2 � C2

Z
S0

�
´�t C a´

�
xx

�
� d
.t/dt �

Z
S0

C2.´
�
t C c´

�
xx/d
.t/dt

� c1=2
Z
S0

 � d
.t/dt:

With  2 Cb.S0/, clearly  � !  uniformly on S0 when � # 0, leading to (3.2)
for n D 0 and the universal finite constant C.T; I / D C2C5c�1=2, which depends
only on T , I , and the functions b.�/ and A.�/ on Œ0; 1�.

To extend (3.2) to other values of n 2 Z, let �n.�/ WD �. � C n/ and note
that the path 
n. � ; � / D 
. � ; � C n/ 2 A�;�n if and only if 
 2 A�;�. Setting
next gn. � ; � / D g. � ; � C n/, we clearly have that .
n;R
ngn/.s/ is independent
of n for each s 2 Œ0; T �. Hence, I�;�n.
n/ D I and, since to any nonnegative
 2 Cb.Sn/ corresponds nonnegative  n. � ; � / D  . � ; � C n/ 2 Cb.S0/, by the
preceding proof:Z
Sn

 .t; x/d
.t/dt D
Z
S0

 n.t; x/d
n.t/dt � C.T; I /k nk2 D C.T; I /k k2

(as C is independent of the initial measure). This completes the proof of part (b).
(c) Fixing n 2 Z we already know that Rx 2 Lp.Sn/ for p D 1; 2. Further,

upon applying the Cauchy-Schwarz inequality with respect to Lebesgue measure
on Sn, we have thatZ

Sn

R3=2x dm �
�Z
Sn

Rx dm
�1=2�Z

Sn

R2x dm
�1=2

:

We have shown in part (b) that the rightmost term is bounded uniformly in n, so
our claim that the left side is summable over n 2 Z follows from the finiteness ofP
jnj�1 �n, with �n WD .

R
Sn
Rx dm/1=2. Next, taking � > 0 as in the given moment

condition (1.6), we get by Cauchy-Schwarz that for c1 WD
P
jnj�1 jnj

�.1C�/ and
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c2 WD supfjn=yj1C� W y 2 Sn; jnj � 1g finite,�X
jnj�1

�n

�2
� c1

X
jnj�1

jnj1C��2n � c1c2
X
jnj�1

Z
Sn

jyj1C�Rx.t; y/dm.t; y/

� c1c2

Z
RT

jyj1C� d
.t/dt <1

(see (1.6) for the rightmost inequality). �

LEMMA 3.2. If R D R.
/ and I�;�.
/ < 1, then Rx exists as an element of
Lp.RT / for all 3

2
� p < 3.

PROOF. We fix 3
2
� p < 3 and set 3

2
< q � 3 such that 1

p
C

1
q
D 1. For any

given nonnegative f 2 �S , we consider the backward Cauchy problem

(3.7) ut C a.t; x/uxx C f .t; x/u D 0; u.T; � / D 1

with a.t; x/ WD A.R.t; x//. While a.t; x/ 2 Cb.RT / is not differentiable in x,
recall from part (a) of Lemma 3.1 that it is uniformly continuous and bounded
away from 0. Considering [26, theorem 2.1] for w WD u � 1, such a. � ; � / and any
f 2 Lr.RT /, we see that (3.7) has a weak solution, for which w D u � 1 is an
element of W 1;2

r .RT /. Further, here f 2 Lq.RT / \ L2.RT / \ L3.RT /, from
which it follows that the norm bounds of [26, theorem 4.1] can be refined to an
estimate on the norms in Lq.RT /\L2.RT /\L3.RT /. From the latter estimate,
we conclude upon applying the method of continuity (see, e.g., [30, sec. III.2]), that
for f 2 �S the problem (3.7) has a weak solution, for which u � 1 is an element
of W 1;2

q .RT / \W
1;2
2 .RT / \W

1;2
3 .RT /.

Next, let Y.�/ denote the canonical process having the law P of a diffusion with
generator a.t; x/ d2

dx2 (which exists thanks to uniform continuity and the bound-
edness of a from above and below). Applying Itô’s formula in the form of the
last identity in [27, chap. 10, theorem 1] (again using the boundedness of a from
above and below), we obtain the stochastic representation of such a weak solution
of (3.7),

(3.8) u.t; x/ D EP
�

exp
�Z T

t

f .s; Y.s//ds
� ˇ̌̌

Y.t/ D x

�
:

The latter representation implies that u � 1, and by Portenko’s lemma (see [35, in-
equality (6)], note that it only relies on the standard heat kernel estimate for the
diffusion with law P and that q > 3

2
throughout this proof), there is a nondecreas-

ing function Gq W Œ0;1/! Œ1;1/ depending only on 3
2
< q � 3 (and not on f )

such that
1 � u.t; x/ � Gq

�
kf kLq.RT /

�
; .t; x/ 2 RT :

Next, observe that the nonnegative v WD logu inherits the bound

(3.9) 0 � v.t; x/ � Gq.kf kLq.RT //; .t; x/ 2 RT :
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Recall that ut ; uxx 2 L3.RT /, and with u 2 W 1;2
2 .RT / further ux 2 L6.RT /

(by the parabolic Sobolev inequality in the form of [29, chap. II, lemma 3.3]),
which for positive u bounded away from 0, imply also that vt ; vxx 2 L3.RT / and
vx 2 L6.RT / (with vxx C v2x D uxx=u). From this it follows in turn that m-a.e.
on RT such v and its generalized derivatives satisfy the backward equation

(3.10) vt C a.t; x/vxx C a.t; x/v2x C f .t; x/ D 0; v.T; � / D 0:

Recall that while proving Corollary 2.3 we found in (2.8) a function h whose
L2.RT ; aRxdm/ norm is bounded by C6 WD 2I 1=2 C kbk1.T=a/

1=2 (due to
(2.6) and the assumed bounds on b.�/ and A.�/ � a), so that, for any g 2 �S ,

(3.11) .
; g/.T / � .
; g/.0/ D

Z
RT

.gt C agxx � agxh/Rx dm

(consider (2.7)). With Rx 2 L3=2.RT / (by part (c) of Lemma 3.1) and Hölder’s
inequality Z

RT

j'jRxdm �
�Z

R3=2x dm
�2=3�Z

j'j3 dm
�1=3

;

we deduce that vt , avxx , and av2x are integrable with respect to Rx dm (as is ah2).
Thus, with v bounded, we get from (3.11) upon approximating v in a suitable
(mixed) norm by functions gk 2 �S that

.
; v/.T / � .
; v/.0/ D
Z

RT

.vt C avxx � avxh/Rx dm:

The latter identity, in combination with (3.10), results inZ
RT

fRx dm D �
Z

RT

�
vxhC v2x

�
aRx dmC .
; v/.0/

�
1

4

Z
RT

h2aRx dmC sup
.t;x/2RT

v.t; x/ �
1

4
C 26 CGq.kf kLq.RT //;

where the first inequality is merely the nonnegativity of the L2.RT ; aRxdm/ norm
of vx C h=2, and the second follows from (3.9). With C6 independent of f , we
have that the linear functional f 7!

R
RT

fRx dm is bounded on �S with respect
to the Lq.RT / norm, hence Rx 2 Lp.RT / for 1=p D 1 � 1=q, as claimed. �

LEMMA 3.3. Suppose R D R.
/ and I�;�.
/ D I < 1 for some � 2 M .0/
1 .R/.

Then Rx 2 L3.RT /.

PROOF. Recall from Lemma 3.2 that Rx 2 Lp.RT / for any p 2 Œ3
2
; 3/. Hence,

Rx 2 L
3.RT /, provided p 7! kRxkLp.RT / is uniformly bounded over such p, as

we prove here.
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Step 1. Recall that a.t; x/ D A.R/ and
R

RT
.gtRxCgxtR/dm D 0 (integration

by parts in x). When substituted in (3.11), these yield that the path of CDFs R D
R.
/ is a generalized solution of the Cauchy problem

(3.12) Rt � .A.R/Rx/x D hA.R/Rx; R.0; � / D F�;

with respect to the collection �Sx WD fgx W g 2 �S g of test functions, for some
function h whose L2.RT ; aRx dm/ norm is bounded by finite C6 D C6.T; I /.
That is,

(3.13)
Z
R

.gxR/.T; x/dx �
Z
R

.gxR/.0; x/dx DZ
RT

.gxtR � gxxaRx C gxhaRx/dm

for any g 2 �S .
Next, applying for f D A.R/Rx Hölder’s inequality in the form of

(3.14)
Z

RT

jhjqf q dm �
� Z

RT

jhj2f dm
�q=2� Z

RT

f p dm
�q=.2p/

with 3
2
� p < 3 and q

2
C

q
2p
D 1, namely q WD 2p

pC1
2 Œ6

5
; 3
2
/, we deduce that

hA.R/Rx 2 L
q.RT /. Thus, by the regularity theory for the heat equation (see

inequalities (3.1) and (3.2) in [29, chap. IV] or [26, theorem 2.1]), we have that the
function

V.t; x/ WD

Z t

0

Z
R

.hA.R/Rx/.s; y/'.t � s; x � y/dy ds;

obtained by convolving with the heat kernel '.t; x/ D .4�t/�1=2 exp.�x2=4t/, is
a generalized solution of the auxiliary Cauchy problem

(3.15) Vt � Vxx D hA.R/Rx; V .0; � / D 0

(with respect to the collection �Sx). In addition,

kV k
W
1;2
q .RT /

� C7khA.R/RxkLq.RT /;

where C7 < 1 is a uniform constant (which in particular does not depend on q
as long as q belongs to a compact interval). Thus, V 2 W 1;2

q .RT / and, due to
the parabolic Sobolev inequality (in the form of [29, chap. II, lemma 3.3]), also
V; Vx 2 L

r.RT / for any q � r � p0 where p0 WD
�
1
q
�
1
3

��1
D

6p
3Cp

. Further, the
constants in this parabolic Sobolev inequality can be chosen uniformly over p in
any given compact interval; hence for some uniform C8 <1 and all p 2 Œ3

2
; 3/,

(3.16) kVxkLp0 .RT / � C8khA.R/RxkLq.RT /
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where q D 2p
pC1

and p0 D 6p
3Cp

. Similarly, the function

Z.t; x/ WD

Z
R

F�.y/'.t; x � y/dy;

is a classical solution of the initial value problem

(3.17) Zt �Zxx D 0; Z.0; � / D F�:

Since F�.y/ D
R y
�1

�.´/d´ for � WD d�
dx , clearly Zx is given by the convolution

(in space) of � and the heat kernel '.t; � /. Consequently, by Fubini’s theorem and
Young’s inequality, for any p; q � 1 such that 1=p C 1=q D 1=r C 1,

kZxk
r
Lr .RT /

D

Z T

0

kZx.t; � /k
r
Lr .R/dt � k�k

r
Lq.R/

Z T

0

k'.t; � /krLp.R/dt:

By assumption � 2 M
.0/
1 .R/, so � 2 L1.R/ \ Lq0.R/ for some q0 > 1,

and hence the norms k�kLq.R/, 1 � q � q0, are uniformly bounded. Further,
k'.t; � /kLp.R/ � t

�.p�1/=.2p/ for all t > 0 and p � 1. Considering q D q0 ^ r ,
with p � 1 such that for 1 � r � 3 the value of r.p � 1/=.2p/ is bounded away
from 1, we conclude that kZxkLr .RT /, 1 � r � 3, are uniformly (in r) bounded
by some finite C9 D C9.T; k�kq0/.

From (3.12), (3.15), and (3.17) it follows by a direct computation that U WD
R � V �Z is a generalized solution of the Cauchy problem

(3.18) Ut � .A.R/Ux/x D Œ.A.R/ � 1/Vx C .A.R/ � 1/Zx�x; U.0; � / D 0;

with respect to test functions in �Sx (interpreted via integration by parts in t and x,
similarly to what we have done in (3.13)).

Step 2. We proceed to obtain the uniform-in-p bounds on Lp norms of Ux (and
thereby those of Rx) out of the bounds we already have for Vx and Zx . To this
end, recalling part (a) of Lemma 3.1, refining the norm estimates in [26, theorem
6.2] to estimates in Lp.RT /\Lp

0

.RT / with p0 D 6p
3Cp

, and applying the method

of continuity (see, e.g., [30, sec. III.2]), we deduce the existence of a solution �U
of the problem (3.18) in the space Hp.T /\Hp0.T / defined in [26]. In particular,�U 2 Lp0.RT /, �Ux 2 Lp0.RT /, and

(3.19) k�U kLp0 .RT / C k�UxkLp0 .RT / � C10�kVxkLp0 .RT / C kZxkLp0 .RT /�
with p0 D 6p

3Cp
and where the finite constant C10 D C10.T; kAk1; a/ can be

chosen uniformly for all 2 � p0 < 3.
We show in Step 3 below that U D �U Lebesgue a.e. on RT . Thus, Ux 2

Lp
0

.RT / and consequently also Rx D Ux C Vx C Zx 2 L
p0.RT /. Hence, com-

bining the norm bounds (3.16) and (3.19) with Hölder’s inequality (3.14) yields the
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estimate

(3.20) kRxkLp0 .RT / � C11kRxk
1=2

Lp.RT /
C C12

for the finite constants C11 D .1CC10/C8.C6kAk1/1=2 and C12 D .1CC10/C9
(both independent of 3

2
� p < 3). Since p0 � p > 1, by Jensen’s inequality

(for the convex function x.p
0�1/=.p�1/ and the probability measure T �1Rx dm on

RT ), we deduce that for any p 2 Œ3
2
; 3/

kRxk
r.p/

Lp.RT /
� C13kRxkLp0 .RT /;

where r.p/ D p.p0�1/
p0.p�1/

� 1 and C13 D max.1; T 1=2/ is finite. Combining this
with (3.20) we conclude that

kRxkLp.RT / � max
n
1; C13

�
C11 kRxk

1=2

Lp.RT /
C C12

�o
:

As explained before, having kRxkLp.RT / bounded, uniformly over 3
2
� p < 3,

yields that Rx 2 L3.RT / (whose L3-norm is bounded by some C.T; I / finite).

Step 3. Turning to show that Lebesgue a.e.U D �U on RT , we start by verifying
that R�Z 2 Lp.RT /. Indeed, as jR�Zj � 1, it suffices to check this for p D 1,
in which case by the triangle inequalityZ

RT

jR �Zjdm �
Z

RCT

.1 �R/dmC
Z

RCT

.1 �Z/dmC
Z

R�T

R dmC
Z

R�T

Z dm

D

Z
RT

jxjRx dmC
Z

RT

jxjZx dm;(3.21)

where RCT D Œ0; T � � RC, R�T D Œ0; T � � R�, and the last equality applies since
R.t; � / andZ.t; � / are CDFs having densities Rx andZx with respect to Lebesgue
measure on RT . Since 
 2 A�;�, the first term on the right side of (3.21) is
finite (see (1.6)), whereas the second term amounts to

R T
0 EŒjY CW.2t/j�dt for Y

of law �, independently of the standard Brownian motion fW g. By the triangle
inequality, the latter term is at most 1

3
.2T /3=2 C T

R
R jxjd�, hence finite (since

� 2M
.0/
1 .R/).

Now, with R � Z 2 Lp.RT /, and having seen already in Step 1 that V 2
Lp.RT / (by the parabolic Sobolev inequality for V 2 W 1;2

q .RT /), we conclude
that U D R �Z � V 2 Lp.RT /. Similarly, Ux 2 Lp.RT /, since Rx 2 Lp.RT /
(from Lemma 3.2), and we have already established in Step 1 that Zx 2 Lp.RT /
and Vx 2 Lp.RT /.
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Recall that h 2 L1.Rx dm/, so V 2 L1.RT /, and hence U 2 L1.RT / as well.
Now, fixing g 2 �S we let

(3.22) f .t; x/ D �

Z 1
x

g.t; y/dy; .t; x/ 2 RT ;

and claim that, for Lebesgue almost every 0 � t1 < t2 � T ,

(3.23)
Z
R

f .t2; x/U.t2; x/dx �
Z
R

f .t1; x/U.t1; x/dx �
Z t2

t1

Z
R

Uft dm D

�

Z t2

t1

Z
R

ŒA.R/Ux C .A.R/ � 1/.Vx CZx/�fx dm:

Indeed, from the weak formulation of the PDE in (3.18) we have (3.23) when
f 2 �Sx . This in turn extends to all f as in (3.22), by the uniform joint approxi-
mation on compacts of the continuously differentiable and bounded .f; ft ; fx/ by
.zg; zgt ; zgx/ for some zg 2 �Sx (taking such a compact large enough that the con-
tribution to (3.23) from its complement is as small as desired, which we can do
since A.R/Ux C .A.R/ � 1/.Vx C Zx/ 2 Lp.RT / and U 2 L1.RT /). Next, in-
tegrating by parts in space on the left side of (3.23), we conclude that the function
W.t; x/ D

R x
�1

U.t; y/dy is a generalized solution of the Cauchy problem

(3.24) Wt D A.R/Wxx C .A.R/ � 1/.Vx CZx/; W.0; � / D 0;

on RT (with respect to test functions from �S ). This, Wxx D Ux 2 L
p.RT /,

Vx 2 L
p.RT /, and Zx 2 Lp.RT / imply Wt 2 Lp.RT /. Thus, in view of [26,

norm estimate (6.1)], we have that U 2Hp.RT /, so that U D �U Lebesgue almost
everywhere by [26, theorem 2.4]. �

PROOF OF PROPOSITION 2.2(B). From the proof of Lemma 3.3 we recall that
R � Z;Zx; Rx 2 L

r.RT / for all r 2 Œ1; 3� and V 2 W 1;2
q .RT / for all q 2 Œ6

5
; 3
2
�

(where, since Rx 2 L3.RT /, the argument leading to (3.16) now applies also for
p D 3 and q D 3

2
). Consequently, Vt ; Vxx 2 Lq.RT / for any q 2 Œ6

5
; 3
2
� and,

by the parabolic Sobolev inequality (in the form of [29, chap. II, lemma 3.3]), also
V; Vx 2 L

p0.RT / for any p0 D .1
q
�
1
3
/�1 2 Œ3

2
; 3�. Since U D R � Z � V , this

in turn implies that U;Ux 2 Lp.RT / for all p 2 Œ3
2
; 3�. Further, Zt D Zxx 2

Lq.RT / for all q 2 Œ6
5
; 3
2
�; hence it suffices to show that U 2 W 1;2

q .RT /, as then
Ut ; Uxx 2 L

q.RT /, implying the same for Rt and Rxx . To this end, rewriting
(3.18) we have that U solves

(3.25) Ut � A.R/Uxx D A
0.R/Rx Ux C

�
.A.R/ � 1/Vx C .A.R/ � 1/Zx

�
x

with respect to test functions in �Sx , starting at U.0; � / D 0. For any q 2 Œ6
5
; 3
2
�

there exist r; p 2 Œ3
2
; 3� such that 1

p
C

1
r
D

1
q

, so with A.�/ and A0.�/ bounded,
by Hölder’s inequality and the preceding integrability properties, the right side in



INTERACTING DIFFUSIONS 19

(3.25) belongs to Lq.RT / for all q 2 Œ6
5
; 3
2
�. Thus, fixing q 2 Œ6

5
; 3
2
� we may apply

[26, theorem 2.1] to deduce that there is a function zU 2 W 1;2
q .RT / \W

1;2
3=2
.RT /

that satisfies

zUt � A.R/ zUxx D A
0.R/Rx Ux C Œ.A.R/ � 1/Vx C .A.R/ � 1/Zx�x

and zU.0; � / D 0. In particular, zU ; zUx 2 L3.RT /. Now, we let �k , k 2 N, be
a truncation sequence such that �k 2 C1.R/, 0 � �k � 1, �k � 1 on Œ�k; k�,
�k � 0 on .�1;�k � 1� [ Œk C 1;1/ and max.j�0

k
j; j�00

k
j/ � 2. Next, fixing

k 2 N, we set z� D �k.U � zU/. Then, z� is a generalized solution of the problem

(3.26) z�t � .A.R/z�x/x C A
0.R/Rx z�x D z k; �.0; � / D 0;

with respect to test functions in �Sx , where

z k D �A.R/�
00
k.U �

zU/ � 2A.R/�0k.U �
zU/x

is in L3.RT /. Further, z k.t; x/ D 0 for all x 2 .�k; k/, so by our choice of �k ,

(3.27) lim
k!1

k z kkL3.RT / D 0:

Now, a careful reading of the proof of [29, chap. III, theorem 3.3] shows that the
solution of the problem (3.26) in the space W 0;1

2 .RT / is unique and satisfies

(3.28) kz�k
W
0;1
2 .RT /

� C9

�Z T

0

�Z
R

j z kj
q1 dx

�q2=q1
dt
�1=q2

for all q1 2 Œ2;1� and q2 2 Œ2; 4� with 1
q1
C

2
q2
D 1 provided thatZ T

0

�Z
R

jA0.R/Rxj
q1 dx

�q2=q1
dt <1:

We choose q1 D q2 D 3, so that the latter condition is satisfied. In addition, by

(3.27) and (3.28), the norm kz�k
W
0;1
2 .RT /

tends to 0 in the limit k ! 1, and we

conclude that U D zU 2 W 1;2
q .RT /, as claimed. �

4 Proof of Proposition 2.2(C)
The proof of Proposition 2.2(C) consists of four steps. In Step 1 we convert the

variational formula I�;�.
/ < 1 into the formula (4.6), which corresponds to a
suitable one-dimensional reversible diffusion. Step 2 then deduces the existence
of a sufficiently regular solution to the corresponding backward Cauchy problem
(4.7), which enables us to employ Dirichlet form calculus for establishing in Step 3
the integrability of R2xx=Rx for R D R.
/. From the latter we deduce in Step 4
that R2t =Rx is integrable.
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Step 1. The functions a.t; x/ D A.R/ and b.R/ are uniformly bounded and
our assumption that I�;�.
/ < 1 implies that d
 dt has density Rx 2 L3.RT /
with respect to Lebesgue measure dm (by Proposition 2.2(A)). These facts imply
by multiple applications of Hölder’s inequality that the functional g 7! ˆ
 .g/ �

.g; g/
 in (2.4) is continuous with respect to the norm

kgk1 C kgtkL3=2.RT / C kgxkL3=2.RT / C kgxkL3.RT / C kgxxkL3=2.RT /:

Therefore, denoting by �W 1;2
3=2
.RT / the subspace of all g 2 Cb.RT / for which

gt ; gxx 2 L
3=2.RT / and gx 2 L3=2.RT /\L3.RT /, the assumption I�;�.
/ <1

amounts to

(4.1) sup
g2 �W 1;2

3=2
.RT /

�
.
; g/.T / � .
; g/.0/ �

Z T

0

�

;R
g C ag2x

�
.t/dt

�
<1

for R
 of (2.1). Now, fixing  2 C1.R/ such that limjxj!1  .x/=jxj D 1,
k 0k1 < 1, and ˛0 WD e� .x/dx is a probability measure, we introduce the
parabolic operator

(4.2) R
; 
D

@

@t
C e .x/

@

@x
a.t; x/e� .x/

@

@x
D R


C .ax � a 
0
� b.R//

@

@x

and show next that (4.1) implies that

sup
g2 �W 1;2

3=2
.RT /

�
.
; g/.T / � log

�Z
R

eg.0;x/d˛0

�

�

Z T

0

�

;R
; g C ag2x

�
.t/dt

�
<1:

(4.3)

Indeed, by Cauchy-Schwarz we have the bound

�3 WD

Z
RT

.b.R/ � ax C a 
0/gxRx dm � C2

q
.g; g/


for the finite, positive

C2 WD a
�1=2

�
kbk1T

1=2
C kA0k1kRxk

3=2

L3.RT /

�
C k
p
a 0k1T

1=2:

Further, the implication

(4.4)
8� > 0W ��1 � C1 C �

2�2; �3 � C2
p
�2;

H) 8z� > 0W z��1 C z��3 � 2C1 C
1

2
C 22 C

z�2�2;

holds for all �1; �3 2 R and �2, C1, C2 positive. Therefore, scaling the test func-
tions g in (4.1) and (4.3) by � > 0 and z� D 2�, respectively, then considering (4.4)
for C1 D I�;�.
/, �1 D ˆ
 .g/, and �2 D .g; g/
 proves that the change from R
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to R
; in (4.1) does not make the supremum infinite. Moreover, the change in
value due to the terms corresponding to the initial condition is bounded by

sup
g2 �W 1;2

3=2
.RT /

� Z
R

g.0; x/d� � log
Z
R

eg.0;x/ d˛0

�
� H.�j˛0/

(see, for example, [10, lemma 6.2.13]). The latter relative entropy is finite since

(4.5) H.�j˛0/ D

Z
R

log
d�
d˛0

d� D
Z
R

log
�

e� 
d� �

Z
R

j jd�C
Z
R

log � d�;

while
R

R jxjd� < 1 and � 2 Lq0.R/ for some q0 > 1 (by definition, for � 2
M
.0/
1 .R/).
Next, let E �W 1;2

3=2
.RT / denote the collection of u W RT 7! .0;1/ such that

logu D g 2 �W 1;2
3=2
.RT /. It is easy to verify that E �W 1;2

3=2
.RT / consists of all

positive u 2 �W 1;2
3=2
.RT / that are bounded away from 0, in terms of which (4.3)

becomes

sup
u2E �W 1;2

3=2
.RT /

�
.
; logu/.T / � log

Z
R

u.0; x/d˛0

�

Z T

0

�

;

R
; u

u

�
.t/dt

�
<1:

(4.6)

Step 2. We claim that to every f 2 �S there corresponds a u such that

(4.7) R
; u � f u D 0; u.T; � / D 1;

where all terms of (4.7) are then in L3=2.RT / (by definition ux; Rx 2 Lr.RT / for
all r 2 Œ3

2
; 3�; hence .ax�a 0/ux 2 L3=2.RT / by the Cauchy-Schwarz inequality

and the boundedness of A0, A, and  0). Clearly, having such a solution for (4.7)
amounts to finding a solution w of

R
; w � f w D f; w.T; � / D 0;

or, equivalently (see (4.2)), a solution of

(4.8) wt C .awx/x �  
0awx � f w D f; w.T; � / D 0;

such that u D .w C 1/ 2 E �W 1;2
3=2
.RT /.

To this end, we employ [26, theorem 6.2] together with the method of continuity
to first get a generalized solution w of (4.8) in the space W 0;1

6 .RT / \W
0;1
2 .RT /.

Indeed, the norm bound in [26, inequality (6.3)] extends to a norm bound for func-
tions in H 1

6 \H 1
2 with respect to the norms k�kH�16 Ck�kH�12 and k�kH1

6
Ck�kH1

2

defined in [26] (one only needs to add the norm bounds [26, inequality (6.3)] for
p D 6 and p D 2). Applying the method of continuity (see [30, sec. III.2]) and
relying on such a refined norm estimate to interpolate between the PDE (4.8) and
the corresponding PDE with a smooth coefficient a, we find a solution of (4.8) in
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H 1
6 \H 1

2 , which in particular belongs to W 0;1
6 .RT / \ W

0;1
2 .RT /. Moreover,

by Hölder’s inequality axwx 2 L2.RT / \ L3=2.RT / (since ax D A0.R/Rx 2

L3.RT / and wx 2 Lr.RT / for all r 2 Œ2; 6�). Hence, refining the norm bounds
in [26, theorem 4.1] to an estimate on the norms in L2.RT / \ L3=2.RT / and ap-
plying the method of continuity in a similar fashion, we also have a generalized
solution yw 2 W 1;2

2 .RT / \W
1;2
3=2
.RT / of the equation

(4.9) ywt C a ywxx � a  
0
ywx � f yw D �ax wx C f; yw.T; � / D 0:

Proceeding to show that w D yw, we let f�k; k 2 Ng be the same truncation
sequence as in the proof of Proposition 2.2(B), fix k 2 N and set� WD �k. yw�w/.
Then, � 2 W 0;1

2 .RT / is a generalized solution of

�t C .a�x/x � .ax C  
0 a/�x � f � D  k; �.T; � / D 0;

where

 k D �
00
k a. yw � w/C 2 �

0
k a. yw � w/x � �

0
k  
0 a. yw � w/:

As in the derivation of (3.27), since max.j�0
k
j; j�00

k
j/ � 2 �1jxj2Œk;kC1�, having a;  0

uniformly bounded and . yw � w/; . yw � w/x 2 L2.RT / implies that

(4.10) lim
k!1

k kkL2.RT / D 0:

Hence, writing � D �k yw � �k w, following the paragraph after the statement
of [29, chap. III, theorem 3.3] and applying the energy inequality of [29, chap. III,
theorem 2.1], with r D q D 2 and n D 1 (so that 2

r
C
n
q
�
nC4
2

), we conclude that

(4.11) k�kL2.RT / � C3

�Z T

0

�Z
R

j kj
q dx

�r=q
dt
�1=r

! 0

as k !1 .Therefore,m-a.e.w D yw on RT . All in all, we have found a solution u
to (4.7) such that w D u � 1 is an element of W 1;2

2 .RT / \W
1;2
3=2
.RT /, and hence

also ux D wx 2 L
6.RT / (by the parabolic Sobolev inequality in the form of [29,

chap. II, lemma 3.3] for p D 6 and q D 2).
It thus remains only to show that u 2 Cb.RT / and that u is bounded away

from 0 on RT . To establish this we first apply [29, chap. III, theorem 5.2] to find
a generalized solution zw of (4.8) in the subspace of W 0;1

2 .RT / whose elements
satisfy

(4.12) ess sup
t2Œ0;T �

Z
R

zw.t; x/2 dx C
Z

RT

zw2x dm <1:

Next, we apply [1, theorem 10(vi)], with the constant 
 > 0 there being arbi-
trarily small, to conclude that zu WD zwC1 has to be the unique generalized solution
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of (4.7) in the sense of [1]. It is thus given by

(4.13) zu.t; x/ D

Z
R

�.t; xIT; y/dy

with � denoting the weak fundamental solution of (4.7), defined as in [1, sec. 6].
Now, [1, theorem C] implies that zu is locally Hölder continuous in .t; x/, and hence
continuous in .t; x/ on Œ0; T / � R. Putting this together with [1, theorem 10(vi)],
we conclude that zu is continuous on the whole of RT .

Finally, we use the heat kernel estimates on � from [1, theorem 7] to conclude
that zu has to be bounded between two positive constants. Therefore, all we need to
show now is that zu D u or, equivalently, zw D w. To this end, reusing the truncation
sequence f�kg, we fix k 2 N and set z� WD �k. zw � w/. Then z� 2 W 0;1

2 .RT / is a
generalized solution of

z�t C .a z�x/x �  
0a z�x � f z� D z k; z�.T; � / D 0;

where

z k D �
00
ka. zw � w/C 2�

0
ka. zw � w/x C �

0
kax. zw � w/ � �

0
k 
0a. zw � w/:

TheL2.RT /-norm of �0
k
ax. zw�w/ decays as k !1 (because ax 2 L3.RT / and

k zw � wkL6.Sk;4\S�k;4/ is uniformly bounded in k). Thus, with w; zw;wx; zwx 2
L2.RT / we deduce as in the derivation of (4.10) that

lim
k!1

k z kkL2.RT / D 0:

This implies, as in the derivation of (4.11), that kz�kL2.RT / ! 0 as k ! 1, and
consequently that m-a.e. w D zw on RT .

Step 3. In view of (4.7), we get from (4.6) that

1 > sup
f 2 �S

�
� log

Z
R

u.f /.0; x/d˛0 �
Z T

0

.
; f /.t/dt
�
;

where u.f / 2 E �W 1;2
3=2
.RT / satisfies (4.7). We then deduce that, for some C 2

.0;1/,

(4.14) 1 > sup
g2 �S

�
�

Z T

0

.
; gx C Cg
2/.t/dt

�
D sup
g2 �S

Z
RT

.gRxx � Cg
2Rx/dm

by showing that the L2.˛0/-norm of u.f /.0; � / (and so also log
R

R u
.f /.0; x/d˛0)

is uniformly bounded over all f D gxCCg2 with g 2 �S . To this end, recall from
(4.2) that R
; v D vt CL v for v 2 �W 1;2

3=2
.RT / and the bounded linear operator

L v D e .ae� vx/x W �W 1;2
3=2
.RT / 7! L3=2.RT /:
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We further set Lt� D e .a.t; x/e� �0/x for � 2 C1c .R/. Then, considering
positive �k 2 �S that converge to u.f / in �W 1;2

3=2
.RT /, we deduce from (4.7) that,

for any s 2 Œ0; T �,

1 � ku.f /.s; � /k2
L2.˛0/

D 2

Z T

s

dt
Z
R

u.f /u
.f /
t d˛0

D �2

Z T

s

dt
Z
R

u.f /.L u.f / � f u.f //d˛0

� �2

Z T

s

�f .t/ku
.f /.t; � /k2

L2.˛0/
dt(4.15)

where

�f .t/ D sup
�2C1c .R/W��0;
k�k

L2.˛0/
D1

Z
R

�.Lt � � f .t; � /�/d˛0:

Recall that d˛0 D e� dx, so integrating by parts and then taking � 7!
p
�

yields

�f .t/ D sup
�2C1c .R/W��0;
k�k

L2.˛0/
D1

�
�

Z
R

a.t; � /.�0/2 d˛0 �
Z
R

f .t; � /�2 d˛0

�

D sup
�2C1c .R/W��0;
k�k

L1.˛0/
D1

�
�
1

4

Z
R

.�0/2

�
a.t; � /d˛0 �

Z
R

f .t; � /� d˛0

�
:

Further, for any g 2 �S and smooth � such that �˛0 2 M1.R/, we get by integra-
tion by parts and the Cauchy-Schwarz inequality that

(4.16)
ˇ̌̌̌ Z

R

gx.t; � /� d˛0

ˇ̌̌̌
D

ˇ̌̌̌ Z
R

g.t; � /.�0�� 0/d˛0

ˇ̌̌̌
�
p
�1�2Ck 

0
k1
p
�2;

with �1 D
R

R .�
0/2=� d˛0 and �2 D �2.t/ D

R
R g

2.t; � /� d˛0. Hence, for f D
gx C Cg

2 with g 2 �S , we end up with

(4.17) sup
t2Œ0;T �

f�f .t/g � sup
�1;�2�0

�
�
1

4
a�1 C

p
�1�2 C k 

0
k1
p
�2 � C�2

�
:

For C > 0 large enough, the right side of (4.17) is finite; hence we deduce
from (4.15) by applying Grönwall’s lemma for s 7! ku.f /.T � s; � /k2

L2.˛0/
that

ku.f /.0; � /kL2.˛0/ is bounded uniformly (over such f ), as claimed.
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Next, let bH denote the closure of �S with respect to the L2.Rxdm/-norm. From
(4.14) we know that, for some finite C1; C and all g 2 �S ,ˇ̌̌̌ Z

RT

gRxx dm
ˇ̌̌̌
� C1 C Ckgk

2bH:
Hence, g 7!

R
RT

gRxx dm extends to a bounded linear functional on bH, which

by the Riesz representation theorem is of the form g 7! .g; yh/bH for some yh 2 bH.

The identity
R

RT
gRxx dm D

R
RT

gyhRx dm for all g 2 �S implies that m-a.e. if

Rx D 0, then Rxx D 0, with yh D Rxx
Rx

(subject to our running convention that
0
0
D 0). Consequently,

(4.18)
Z

RT

R2xx
Rx

dm D
Z

RT

yh2Rx dm D kyhk2bH <1:

Step 4. Following the derivation of (4.18) out of (4.14), if

(4.19) sup
g2 �S

Z
RT

.2gRt � g
2Rx/dm <1;

then
R

RT
R2t
Rx

dm <1. Furthermore, plugging into (4.19) the value of Rt from the
PDE (3.12), all the terms of which are in L3=2.RT /, we find that (4.19) amounts
to

(4.20) sup
g2 �S

Z
RT

�
2gŒA0.R/Rx C yhA.R/C hA.R/� � g

2
�
Rx dm <1

for yh 2 bH of (4.18) and h 2 L2.Rx dm/ of (2.8). Pointwise optimizing in (4.20)
over the value of g.t; x/ at each point of RT bounds the supremum by the finite
kA0.R/Rx C yhA.R/C hA.R/k

2
L2.Rxdm/, thereby completing the proof. �

Remark 4.1. A crucial step in the proof of Proposition 2.2(C) consists of showing
that the continuous u D w C 1 solving (4.7), with w 2 W 1;2

2 .RT / \W
1;2
3=2
.RT /,

is further bounded and bounded away from 0. In doing so we relied on the results
of [1], but we note in passing that with some additional work such positivity can
be obtained from [28, cor. 4.6], bypassing the need for [1].

5 Proof of Proposition 2.5

Fixing throughout � 2 .0; 1� and � 2 M .�/
1 .R/, we start with the convexity of

the functionals from which J�;�.�/ is composed, followed by its use in establishing
convergence results for zJ .�/.
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LEMMA 5.1. The functionals

(5.1) J .1/.R/ D

Z
RT

R2t
Rx

dm; J .2/.R/ D

Z
RT

R2xx
Rx

dm; J .3/.R/ D

Z
RT

R3x dm;

are convex on the set F D F3=2 of (1.7).

PROOF. The convexity of J .3/.�/ is an immediate consequence of the convexity
of x 7! x3 on Œ0;1/. Further, recall from Steps 3 and 4 in the proof of Proposition
2.2(C), that on F

J .1/.R/ D sup
g2 �S

Z
RT

�
2gRt � g

2Rx
�
dm;

J .2/.R/ D sup
g2 �S

Z
RT

�
2gRxx � g

2Rx
�
dm;

so each of these functionals, being a supremum of linear functionals, must therefore
be convex. �

LEMMA 5.2. Suppose A.�/ � a > 0 with b.�/ and A0.�/ continuous and bounded.
Let R D R.
/ for 
 2 C such that J�;�.
/ < 1 and suppose the strictly positive
probability densities R�x 2 C

1;1.RT / are such that

(5.2) lim sup
�#0

J .`/.R�/ � J .`/.R/; ` D 1; 2; 3;

R� ! R uniformly on compacts, R�x ! Rx in Lp.RT /, p 2 Œ2; 3� and m-a.e.
R�t ! Rt , R�xx ! Rxx . If 
� D R�x dx are such that 
�.0/ 2M .0/

1 .R/, then

(5.3) lim
�#0

zJ .
�/ D J�;�.
/:

PROOF.

Step 1. We first show that as � # 0:Z
RT

ˇ̌̌̌
R�t�
R�x
�1=2 � Rt

.Rx/1=2

ˇ̌̌̌2
dm! 0;(5.4)

Z
RT

ˇ̌̌̌
R�xx�
R�x
�1=2 � Rxx

.Rx/1=2

ˇ̌̌̌2
dm! 0;(5.5)

Z
RT

ˇ̌�
R�x
�3=2
� .Rx/

3=2
ˇ̌2 dm! 0:(5.6)
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To this end, with jx1 � x2j2 � jx21 � x
2
2 j whenever x1; x2 2 RC and R�x ! Rx in

L2.RT /, it follows that, for � # 0,

(5.7)
Z

RT

ˇ̌�
R�x
�1=2
� .Rx/

1=2
ˇ̌2 dm! 0:

Similarly, combining the inequality jx31 � x
3
2 j �

3
2
jx21 � x

2
2 jmax.x1; x2/ (which

holds for all x1; x2 2 RC) with Hölder’s inequality, we find thatZ
RT

ˇ̌�
R�x
�3=2
� .Rx/

3=2
ˇ̌2 dm

�
9

4

Z
RT

ˇ̌
R�x �Rx

ˇ̌2 max
�
R�x; Rx

�
dm

�
9

4

� Z
RT

ˇ̌
R�x �Rx

ˇ̌3 dm
�2=3� Z

RT

max
�
R�x; Rx

�3 dm
�1=3

:

By assumption R�x ! Rx in L3.RT / and, due to (5.2) for ` D 3, the norms
kR�xkL3.RT / are uniformly bounded, thereby yielding (5.6).

Turning to prove (5.4), we let c� D R�t .R
�
x/
�1=2, which by (5.2) with ` D 1 is

L2.RT /-bounded. Hence, for any sequence �k # 0 we have that c� ! c� weakly
in L2.RT / along some subsequence (by the Banach-Alaoglu theorem, where c� 2
L2.RT /may depend on the chosen subsequence). From the triangle inequality, we
thus get from (5.7) that along this subsequence, for any fixed  2 Cc.RT /,

(5.8)
Z

RT

�
R�x
�1=2

c� dm!
Z

RT

.Rx/
1=2c� dm:

Since R 2 F , we have that Rt 2 L3=2.RT / and, by the assumption of the lemma,
.R�x/

1=2c� D R�t ! Rt m-a.e. Thus, for any fixed  2 Cc.RT /, the left-hand
side of (5.8) converges to

R
RT

Rt dm as � # 0, resulting in

(5.9)
Z

RT

.Rx/
1=2c� dm D

Z
RT

Rt dm:

Furthermore, with .Rx/1=2 2 L6.RT / and c� 2 L2.RT /, by Hölder’s inequality
.Rx/

1=2c� 2 L3=2.RT /, so from (5.9) we conclude thatm-a.e. c� D Rt .Rx/�1=2,
independently of the sequence �k . That is, R�t .R

�
x/
�1=2 ! Rt .Rx/

�1=2 weakly in
L2.RT / when � # 0. Together with the L2.RT /-norm bound of (5.2) for ` D 1,
this yields the (strong) convergence of (5.4).

Finally, the same argument, just with R�t replaced by R�xx , yields (5.5).
Step 2. To deduce (5.3) from (5.4)–(5.7), recall that J�;�.
/ <1 requires 
 2

A�;� and, in particular, thatR D R.
/ 2 Cb.RT / satisfies (3.1) for someM DM˛
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finite (and all ˛ > 0). Thus, our assumption that R� ! R uniformly on compact
sets, combined with the monotonicity of the distribution functions x 7! R�.t; x/,
x 7! R.t; x/, and (3.1), yields that R� ! R uniformly on RT when � # 0. This,
and the assumed continuity of A0 and b on Œ0; 1�, show that as � # 0,

(5.10) �.R�/! �.R/; A0.R�/! A0.R/; b.R�/! b.R/ uniformly on RT :

Moreover, all functions appearing in (5.10) are uniformly bounded on RT . Putting
this together with the uniform positivity of � and (5.4)–(5.7), we have the following
convergences in L2.RT / when � # 0:

1

�.R�/

R�t

.R�x/
1=2
!

1

�.R/

Rt

.Rx/1=2
;(5.11)

�.R�/
R�xx

.R�x/
1=2
! �.R/

Rxx

.Rx/1=2
;(5.12)

A0.R�/

�.R�/

�
R�x
�3=2
!

A0.R/

�.R/
.Rx/

3=2;(5.13)

b.R�/

�.R�/

�
R�x
�1=2
!

b.R/

�.R/
.Rx/

1=2:(5.14)

By Hölder’s inequality the finiteness of J .`/.R�/, ` D 1; 2; 3, implies that R� D
R.


�/ 2 F , and by our assumptions, also 
� 2 zA . Thus, as � # 0 we have that

zJ .
�/ D
1

2





R�t � .A.R�/R�x/x�.R�/.R�x/
1=2

C
b.R�/

�.R�/

�
R�x
�1=2



2

L2.RT /

�!
1

2





Rt � .A.R/Rx/x�.R/.Rx/1=2
C
b.R/

�.R/
.Rx/

1=2





2
L2.RT /

D J�;�.
/:

This completes the proof of Lemma 5.2. �

Under Assumption 1.2(a), (b), and (d), our key result provides the conclusions
of Proposition 2.5 for J�;�.
/ < 1 and some 
� in the collection G ?� that we
define next (cf. Definition 2.4 of G ).

DEFINITION 5.3. Let G ?� be the subset of f
 2 C W J�;�.
/ < 1; some � 2
M
.�/
1 .R/g, such that R D R.
/ 2 C1

b
.RT / with Rx strictly positive and

(5.15)
ˇ̌
@
j
t @
k
xR.t; x/

ˇ̌
� cj;kR?.x/ 8.t; x/ 2 RT

for some fcj;k; finite j; k 2 Ng and

(5.16) R?.x/ WD sup
t2Œ0;T �

f zR.t; x/g; zR.t; x/ WD 1 �R.t; jxj/CR.t;�jxj/:

PROPOSITION 5.4. Suppose A.�/ � a > 0 with b.�/ and A0.�/ continuous and
bounded. If J�;�.
/ <1 for some � 2M .�/

1 .R/, then there exist f
�g � G ?� such
that 
� ! 
 in C as � # 0, sup�

R
jxj1C� d
�.0/ is finite, and (5.3) holds.
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PROOF. The proof consists of three steps. In Step 1 we construct 
ı;� 2 C

whose smooth CDF paths Rı;� D R.

ı;�/ 2 C1

b
.RT / satisfy (5.15) and have

strictly positive PDFs Rı;�x . Step 2 confirms that 
ı;� ! 
 in C when .ı; �/ !
.0; 0/ and that 
ı;� 2 A�;� for � D 
ı;�.0/ whose .1C �/th moments are bounded,
uniformly over .ı; �/. Then, relying on Lemma 5.2, we verify in Step 3 that (5.3)
holds for ı D ı.�/ small enough (so, in particular, such 
ı;� 2 G ?� ).

Step 1. Let � 2 C1.R/ be a strictly positive probability density withZ
jxjk�.x/dx <1 and j�.k/.x/j � ck�.x/

for some finite ck , k � 1, and all x 2 R (for example, the smoothing near x D 0

of e�2jxj provides such �). With ��.y/ D ��1�.y=�/, for each ı; � 2 .0; 1/ we
consider the function

(5.17) Sı;�.t; x/ D

Z
R

R..t � 3ı/C; y/��.x � y/dy

on RTC3ı . Then, fixing a probability density  2 C1c .R/ supported on Œ0; 3�with

(5.18) c D inf
s2Œ1;2�

f .s/g > 0;

we set  ı.s/ D ı�1 .s=ı/ and consider

(5.19) Rı;�.t; x/ D
Z TC3ı

0

Sı;�.s; x/ ı.s � t /ds; ı; � 2 .0; 1/; .t; x/ 2 RT :

With  .t/�.x/ a probability density on RT , since each R.t; � / is a CDF, so are
Sı;�.t; � / and Rı;�.t; � /. By the strict positivity of � we have the same for Sı;�x ,
and thereby also for Rı;�x . Next, with �.�/ smooth, Sı;�.t; � / 2 C1

b
.R/ for each

t , �, and ı, hence Rı;� 2 C1
b
.RT / by the smoothness of  . Moreover, as �.�/

pointwise controls its derivatives, it follows that, for each k � 1 and all .t; x/ 2
RT , ˇ̌

@kxS
ı;�.t; x/

ˇ̌
� ck�

�kSı;�.t; x/:

Furthermore, with
R
��.x�y/dy D 1, the same bound holds for 1�Sı;�, resulting

with

(5.20)
ˇ̌
@kxS

ı;�.t; x/
ˇ̌
� ck�

�kŒ.1 � Sı;�.t; x// ^ Sı;�.t; x/� � ck�
�k zSı;�.t; x/

(where zSı;� is related to Sı;� analogously to (5.16)). Thus, having  .�/ smooth
yields, by (5.20) and (5.19), that

(5.21)
ˇ̌
@
j
t @
k
xR

ı;�.t; x/
ˇ̌
�


 .j /

ı




1
ck�
�kV ı;�.t; x/

for all j; k 2 N where

V ı;�.t; x/ D

Z 3ı

0

zSı;�.t C u; x/ du:
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Clearly, for any ı > 0 and .t; x/ 2 RT ,

V ı;�.t; x/ �
3ı

c 
sup

t2Œ0;T �

�Z 3ı

0

zSı;�.t C u; x/ ı.u/du
�
D
3ı

c 
R
ı;�
? .x/

for R?.�/ of (5.16), which together with (5.21) implies that Rı;� satisfies (5.15).
Step 2. Since Sı;�.t; x/ D Sı;�.0; x/when t 2 Œ0; 3ı�, upon specializing (5.19)

to t D 0, we get the smooth CDFs

(5.22) Rı;�.0; x/ DEŒR.0; x � Y�/� DW ‚�.x/

for Y� of density ��. Our assumption that 
.0/ D � 2 M
.�/
1 .R/ translates to


ı;�.0/ 2 M
.�/
1 .R/ with uniformly bounded .1 C �/-moments (since Y� has this

property and f 7! .
R
f .x/q0 dx;

R
jxj1C�f .x/ dx/ is convex over probability den-

sities). Similarly, from (5.17) and (5.19)Z
RT

jxj1C� d
ı;�.t/dt �
Z

RT

EŒjx � Y�j
1C��d
.t/dt

C 3ı

Z
R

EŒjx � Y�j
1C��d
.0/;

with the right-hand side finite, since 
 satisfies (1.6), 
.0/ 2 M .�/
1 .R/, and Y� has

finite moments of all orders. That is, 
ı;� satisfy the moment condition (1.6) and
are thus in A�;
ı;�.0/. In addition, by dominated convergence,Rı;� ! R uniformly
on compacts, so in particular 
ı;� ! 
 in C .

Step 3. By construction, m-a.e. Rı;�x ! Rx , Rı;�t ! Rt , and Rı;�xx ! Rxx
whenever .ı; �/! .0; 0/. Thus, from Lemma 5.2 we get (5.3) for ı D ı.�/ small,
once we show that

(5.23) lim sup
�#0

lim sup
ı#0

J .`/.Rı;�/ � J .`/.R/; ` D 1; 2; 3

(indeed, by Egorov’s theorem, (5.23) for ` D 3 implies that Rı;�x ! Rx in
Lp.RT /, p 2 Œ2; 3�). Turning to prove (5.23), we recall from its definition that
J�;�.
/ <1 implies R D R.
/ 2 F and

J .`/.R/ D

Z 3ı

0

 ı.s/ds
Z
R

J .`/.R. � ; y C � //��.y/dy <1; ` D 1; 2; 3:

Hence, starting with the functional J .1/.�/, we get from the definition ofRı;�, upon
applying Lemma 5.1 twice, that

J .1/.Rı;�/ �

Z 3ı

0

J .1/.Sı;�.s C � ; � // ı.s/ds � J
.1/.R/
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and consequently (5.23) holds for ` D 1. Next, consider the functionals

(5.24) yJ .2/.F / D

Z
R

F 00.x/2

F 0.x/
dx; yJ .3/.F / D

Z
R

F 0.x/3 dx;

which, as in the proof of Lemma 5.1, are convex on the set of twice differentiable
CDFs. Thus, for ` D 2; 3, we get by the same argument as before that

J .`/.Rı;�/ � J .`/.R/C 3ı yJ .`/.‚�/:

From our choice of ��, we have j‚00� j � c1�
�1‚0� and uniformly bounded PDF‚0�.

Consequently, yJ .`/.‚�/ <1 and taking ı # 0 establishes (5.23) for ` D 2; 3. �

Specializing to � D 1 and applying Proposition 5.4 to approximate the given

 2 C of finite J1;�.
/ by a suitable sequence from G ?1 , the proof of Proposition
2.5 is thus completed by considering our next lemma (to get 
` 2 G that suitably
converge to any given 
 2 G ?1 ).

LEMMA 5.5. Suppose 
 2 G ?� and Assumption 1.2(a), (b) and (d) hold. Then, there
exist � 2M .��1/

1 .R/ such that 
` D .1�`�1/
C`�1� 2 G with zJ .
`/! zJ .
/

and 
` ! 
 in C .

PROOF. Recall c0;1 D c0;1.
/ from (5.15). We begin by showing that, with
� D 1=.12c0;1/, the function R? of (5.16) is such that

(5.25) jx � yj � 3� H) R?.y/ � 2R?.x/:

Indeed, since R?.´/ D R?.�´/ is continuous and nonincreasing in j´j, it suffices
to prove that R?.y/ � 2R?.x/ for jxj 2 Œjyj; jyj C 3�� and xy � 0. To this end,
note that by (5.15), for all t 2 Œ0; T �,

jR.t; y/ �R.t; x/j D

ˇ̌̌̌ Z y

x

Rx.t; ´/d´
ˇ̌̌̌
� c0;1

ˇ̌̌̌ Z y

x

R?.´/d´
ˇ̌̌̌
�
1

4
R?.y/:

The preceding implies that, for zR.t; x/ of (5.16),

zR.t; y/ � zR.t; x/C
1

2
R?.y/;

so taking the maximum over t results in R?.y/ � R?.x/C 1
2
R?.y/, as claimed.

We next claim that

(5.26)
Z
R

jxj�R?.x/dx <1:

Indeed, taking y� D 1=.8c1;0/ > 0, we have that, for jt � sj � 2y�,

jR.t; x/ �R.s; x/j � c1;0jt � sjR?.x/ �
1

4
R?.x/;
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out of which we deduce that zR.s; x/ � zR.t; x/C 1
2
R?.x/. Considering s 2 Œ0; T �

such that zR.s; x/ D R?.x/, we thus find that zR.t; x/ � 1
2
R?.x/ throughout a

subinterval of length at least 2y�. Consequently, for all x � 0,

y�R?.x/ �

Z T

0

zR.t; x/dt;

hence by Fubini’s theorem,

�C 1

2
y�

Z
R

jxj�R?.x/dx � .�C 1/
Z 1
0

x� dx
Z T

0

zR.t; x/dt D
Z

RT

jxj�C1 d
.t/dt;

which for 
 2 G ?� is finite in view of (1.6).
Continuing with the proof of the lemma, let � D

R
RR?.y/dy, which by (5.26)

is finite. Then, for � > 0 of (5.25) and  2 C1c .R/ supported on Œ0; 3� as in
Proposition 5.4, we construct the PDF

(5.27) r 0.x/ WD
1

�

Z
R

R?.y/ �.x � y/dy;

and, for each � > 0, consider the path 
� 2 C associated with the CDFs

R�.t; x/ WD .1 � �/R.t; x/C �r.x/:

Since Rx is strictly positive, so are R�x . Furthermore, r 2 C1
b
.R/, and conse-

quently also R� 2 C1
b
.RT /. For � # 0 we clearly have that R� ! R uniformly

on compacts (so 
� ! 
 in C ), and m-a.e. R�t ! Rt , R�xx ! Rxx . Since
r 0.�/ and Rx.t; � / are both uniformly bounded PDFs, obviously also R�x ! Rx in
Lp.RT / for all p 2 Œ2; 3�. Thus, in view of Lemmas 5.1 and 5.2, we have that
zJ .
�/ ! zJ .
/ provided we show that yJ .`/.r/, ` D 2; 3, of (5.24) are finite. The

finiteness of yJ .3/.r/ is trivial, for r 0 is a bounded PDF, whereas yJ .2/.r/ <1 due
to the boundedness of jr 00.x/j=r 0.x/. To see the latter, note that for c > 0 as in
(5.18), by (5.25) and (5.27),

c 

2�
R?.x/ �

c 

�
inf

y2Œx�3�;x�
fR?.y/g � �r

0.x/

� sup
y2Œx�3�;x�

fR?.y/g � 2R?.x/:
(5.28)

Similarly, �jr 00.x/j � 2k 0k1�
�1R?.x/, which, together with the left-hand side

of (5.28), implies that jr 00.x/j=r 0.x/ is uniformly bounded (by 4k 0k1=c ).
Next, combining the right-hand side of (5.28) with (5.26), we deduce that the �th

moment of � D r 0.x/dx is finite. It thus remains only to show that the continuous
function

h.R�/ D
R�t � .A.R

�/R�x/x

A.R�/R�x
is further uniformly bounded and globally Lipschitz in x. With A bounded below,
A0; R�x bounded above, and R�t D .1 � �/Rt , the boundedness of h.R�/ follows
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from that of .jRt jC jRxxjC jr 00j/=r 0. To this end, we have just shown the uniform
boundedness of jr 00.x/j=r 0.x/ and recall from (5.15) that jRt .t; x/jCjRxx.t; x/j �
.c1;0 C c0;2/R?.x/, which by the left-hand side of (5.28) is further bounded by
Cr 0.x/ for some C D C.
/ finite. As for showing that h.R�/ is globally Lipschitz
continuous in x, note that

Œh.R�/�x D
.1 � �/Rtx � .A.R

�/R�x/xx � h.R
�/.A.R�/R�x/x

A.R�/R�x
:

Recall that A.�/ is bounded below, h.R�/, Rx , r 0, and .jRxxj C jr 00j/=r 0 are
bounded above, and A0 is globally Lipschitz. We thus have that jŒh.R�/�xj is uni-
formly bounded, provided that .jRtxj C jRxxxj C jr 000j/=r 0 is uniformly bounded.
The latter holds by the left-hand side of (5.28), since from (5.20) we have that
jRtxj C jRxxxj � CR? for some C DC.
/ finite, and by the same reasoning as
above, we also get that �jr 000j � 2k 00k1��2R?. �

6 Proof of Proposition 2.6
We suppose throughout this section that parts (a)–(c) of Assumption 1.2 hold

for some �? 2 .0; 1� and use the simplified notations I.�/ and A for I�?;�0.�/ of
(2.4) and A�?;�0 of (1.6), respectively. In this setting we establish a local large
deviations upper bound for �N being near 
 , starting with 
 2 A (where I.
/ D
sup

g2 �S Œˆ
 .g/ � .g; g/
 �).

PROPOSITION 6.1. For each 
 2 A and any g 2 �S we have the upper bound

(6.1) lim
ı#0

lim sup
N!1

1

N
log P .�N 2 B.
; ı// � .g; g/
 �ˆ
 .g/:

PROOF. Fixing g 2 �S , for each t 2 Œ0; T � and � 2 C , we set

Hg.�/.t/ D .�;R�g/.t/;

with R�g D gt Cb.R
.�//gxCA.R

.�//gxx of (2.1). Then, applying Itô’s formula
for the real-valued stochastic processes ZgN .t/ WD .�

N ; g/.t/, one finds that

(6.2) Z
g
N .t/ �Z

g
N .0/ D

Z t

0

Hg.�N /.s/ds CM g
N .t/;

with the continuous martingale

(6.3) M
g
N .t/ WD

1

N

NX
iD1

Z t

0

�
�
F�N .s/.Xi .s//

�
gx.s; Xi .s//dWi .s/:

Its quadratic variation is hM g
N i.t/ D

1
N

R t
0 V

g.�N /.s/ds, with

(6.4) V g.�/.t/ WD 2
�
�; A.R.�//g2x

�
.t/:
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Hence, by the martingale representation theorem (see [24, theorem 3.4.2]),

M
g
N .t/ D

1
p
N

Z t

0

q
V g.�N /.s/ dˇN .s/

for some one-dimensional standard Brownian motion ˇN . Next, fixing 
 2 A , let

(6.5) SHg.
/.t/ D

Z t

0

Hg.
/.s/ds; SV g.
/.t/ D

Z t

0

V g.
/.s/ds;

and recall that, by (2.2) and (2.3),

(6.6) .g; g/
 �ˆ
 .g/ D
1

2
SV g.
/.T /C .
; g/.0/C SHg.
/.T / � .
; g/.T /:

We thus proceed to compare ZgN .�/ with the process

(6.7) Y
g
N .t/ D .
; g/.0/C

SHg.
/.t/CM
g;

N .t/; t 2 Œ0; T �;

having the martingale part

M
g;

N .t/ D

1
p
N

Z t

0

p
V g.
/.s/ dˇN .s/; t 2 Œ0; T �:

Step 1. We first show that, on the event �N 2 B.
; ı/,

ZgN � Y gN

1 WD sup
t2Œ0;T �

ˇ̌
Z
g
N .t/ � Y

g
N .t/

ˇ̌
� �;

up to a probability that is negligible at our large deviations exponential scale (in
the limit N !1 followed by ı # 0). To this end, fixing � 2 B.
; ı/ we note thatZ T

0

jHg.�/.s/ �Hg.
/.s/jds �
Z T

0

j.�;R�g/.s/ � .�;R
g/.s/jds

C

Z T

0

j.�;R
g/.s/ � .
;R
g/.s/jds;

and setting zR D R.�/, R D R.
/, we further haveZ T

0

jV g.�/.s/ � V g.
/.s/jds � 2
Z T

0

ˇ̌�
�;A. zR/g2x

�
.s/ �

�
�;A.R/g2x

�
.s/
ˇ̌
ds

C 2

Z T

0

ˇ̌�
�;A.R/g2x

�
.s/ �

�

;A.R/g2x

�
.s/
ˇ̌
ds:

Since 
 2 A , we know that R 2 Cb.RT / and consequently so are R
g and
A.R/g2x , from which we deduce that the second term in both upper bounds tends
to 0 as ı # 0, uniformly in � 2 B.
; ı/. Now, recall that b.�/ and A.�/ are Lip-
schitz functions (under Assumption 1.2(a)–(b)). Hence, to get the same uniform
convergence for the first term in both upper bounds, it suffices to show that

(6.8) lim
ı#0

sup
�2B.
;ı/

Z T

0

.�; j zR �Rj/.s/ds D 0:
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Moreover, fixing ı > 0, by definition of the metric d. � ; � / on C , for any � 2
B.
; ı/ and .s; x/ 2 RT one has that

(6.9) R.s; x � ı/ � ı � zR.s; x/ � R.s; x C ı/C ı

(see (1.5)), and hence, also

j zR.s; x/ �R.s; x/j � R.s; x C ı/ �R.s; x � ı/C ı:

Recall that R.s; x C ı/ � R.s; x � ı/ D 
.s; .x � ı; x C ı�/; hence by Fubini’s
theorem and yet another application of the preceding bound

.�; j zR �Rj/.s/ � ı C

Z
R

.R.s; x C ı/ �R.s; x � ı//�.s; dx/

D ı C

Z
R

�.s; Œy � ı; y C ı//
.s; dy/

� 3ı C

Z
R

.R.s; y C 3ı/ �R.s; y � 3ı//
.s; dy/:

Integrating both sides over s 2 Œ0; T �, we see that (6.8) is a consequence of

lim
ı#0

Z
RT

.R.s; y C 3ı/ �R.s; y � 3ı//
.s; dy/ds D 0;

which in turn follows from the dominated convergence theorem and the fact that
R 2 Cb.RT /. All in all, we have shown that

lim
ı#0

sup
�2B.
;ı/

Z T

0

jHg.�/.s/ �Hg.
/.s/jds D 0;(6.10)

lim
ı#0

sup
�2B.
;ı/

Z T

0

jV g.�/.s/ � V g.
/.s/jds D 0:(6.11)

Recall that .�N ; g/.0/ ! .�0; g.0; � // D .
; g/.0/ by Assumption 1.2(c) and the
definition of A . Hence, comparing (6.2) with (6.7), it immediately follows from
(6.10) that, for any fixed � > 0,

lim
ı#0

lim sup
N!1

1

N
log P

�
�N 2 B.
; ı/;



ZgN � Y gN

1 > 2�
�
�

lim
ı#0

lim sup
N!1

1

N
log P

�
�N 2 B.
; ı/;



M g
N �M

g;

N




1
> �

�
:

Recall [32, theorem 8.5.7] that M g
N .�/ � M

g;

N .�/ has the law of time-changed

standard Brownian motion ˇ.�.�//, for �.t/ D hM g
N � M

g;

N i.t/ (the quadratic
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variation process of the martingale M g
N �M

g;

N ). Moreover, on the event f�N 2

B.
; ı/g, we have that

�.T / D
1

N

Z T

0

�q
V g.�N /.s/ �

p
V g.
/.s/

�2
ds �

1

N
�
 .ı/;

with �
 .ı/ ! 0 as ı # 0 (due to the inequality .
p
x1 �

p
x2/

2 � jx1 � x2j for
x1; x2 � 0 and (6.11)). Thus, from Bernstein’s inequality for Brownian motion,

lim
ı#0

lim sup
N!1

1

N
log P

�
�N 2 B.
; ı/;



M g
N �M

g;

N




1
> �

�
� lim
ı#0

lim sup
N!1

1

N
log P

�
sup

t2Œ0;�
 .ı/=N�

jˇ.t/j > �
�
� � lim

ı#0

�
�2

2�
 .ı/

�
D �1:

Step 2. Recall that, for any ˛1; ˛2 2M1.R/,

(6.12) dBL.˛1; ˛2/ D sup
kf k1Ckf kLip�1

fj.˛1; f / � .˛2; f /jg � 2dL.˛1; ˛2/

(see [13, cor. 11.6.5]). Hence, by (1.5) there exists rg W .0;1/! .0;1/ such that
limı#0 rg.ı/ D 0, and

� 2 B.
; ı/ H) k.�; g/ � .
; g/k1 � rg.ı/:

Recalling that ZgN .t/ D .�
N ; g/.t/, we thus have from Step 1 that, for any � > 0,

lim
ı#0

lim sup
N!1

1

N
log P .�N 2 B.
; ı//

D lim
ı#0

lim sup
N!1

1

N
log P

�
�N 2 B.
; ı/;



ZgN � Y gN

1 � ��
� lim
ı#0

lim sup
N!1

1

N
log P

�
k.�N ; g/ � .
; g/k1 � rg.ı/;



ZgN � Y gN

1 � ��
� lim sup

N!1

1

N
log P

�

.
; g/ � Y gN

1 � 2��:
Therefore, it suffices to prove the simpler local large deviations upper bound

lim
�#0

lim sup
N!1

1

N
log P

�

.
; g/ � Y gN

1 � �� � �Ig..
; g//;(6.13)

provided that (see (6.6))

(6.14) Ig..
; g// � .
; g/.T / � .
; g/.0/ � SHg.
/.T / �
1

2
SV g.
/.T /:

Step 3. We establish (6.13) as a consequence of the LDP holding for fY gN g in the
space C.Œ0; T �;R/ with a good rate function Ig.�/. Indeed, note that by the time-
change formalism for Itô integrals (see, e.g., [32, theorem 8.5.7]), the process Y gN
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can be obtained as ‰.N�1=2 ž/ for a one-dimensional standard Brownian motion
ž.t/, t � 0, and the deterministic operator

‰ W C.Œ0;1/;R/! C.Œ0; T �;R/;

.‰h/.t/ D .
; g/.0/C SHg.
/.t/C h.SV g.
/.t//:

Clearly, ‰ is continuous with respect to uniform convergence on compacts in
C.Œ0;1/;R/. Hence, by Schilder’s theorem (see [10, theorem 5.2.3]) and the con-
traction principle (see [10, theorem 4.2.1]), the sequence fY gN g satisfies the LDP in
C.Œ0; T �;R/ with the good rate function

(6.15) Ig.f / D inf
fhW‰.h/Df g

1

2

Z S

0

�
dh

du

�2
du;

where S D SV g.
/.T / and the infimum is over all absolutely continuous functions
h on Œ0; S�, starting at h.0/ D 0, with Radon-Nikodym derivative dh

du
2 L2.Œ0; S�/.

In particular, since

0 �
1

2

Z S

0

�
dh

du
� 1

�2
du D

1

2

Z S

0

�
dh

du

�2
du � h.S/C

1

2
S;

it follows from the requirement .‰h/.T / D .
; g/.T / that

Ig..
; g// � h.S/ �
1

2
S D .
; g/.T / � .
; g/.0/ � SHg.
/.T / �

1

2
S;

which is precisely our claim (6.14). �

We proceed with the local large deviations upper bound for paths 
 … A .

PROPOSITION 6.2. If 
 … A , then

(6.16) lim
ı#0

lim sup
N!1

1

N
log P .�N 2 B.
; ı// D �1:

PROOF. Fixing N , let Q.b/ denote the law of the solution of the SDS (1.2) with
Q D Q.0/ corresponding to the solution of (1.2) in the case b � 0. Recall that

(6.17)
dQ.b/

dQ
D exp

�
M b
N .T / �

1

2

˝
M b
N

˛
.T /

�
(see [24, theorem 3.5.1]), with the continuous martingale

M b
N .t/ D

NX
iD1

Z t

0

b.F�N .s/.Xi .s///

�.F�N .s/.Xi .s///
dWi .s/; t 2 Œ0; T �;

whose quadratic variation is hM b
N i.t/ D N

R t
0 U

2
N .s/ds, with UN .s/ uniformly

bounded by kb=�k1. Hence, setting � D T
2
kb=�k21, by the Cauchy-Schwarz
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inequality,

Q.b/.�N 2 B.
; ı// D Q
�
eM

b
N .T /�

1
2
hMb

N i.T /1f�N2B.
;ı/g
�

� e�NQ
�
e2M

b
N .T /�2hM

b
N i.T /

�1=2
Q
�
�N 2 B.
; ı/

�1=2
D e�N Q.2b/Œ1�1=2Q.�N 2 B.
; ı//1=2:(6.18)

Consequently, it suffices to establish (6.16) when b � 0 in order to have the same
conclusion for any other choice of b.�/. With A independent of such choice, we
proceed throughout the proof with b � 0 (without loss of generality). In addition,
since �N ! �0, the bound (6.16) trivially holds when 
.0/ ¤ �0. Assuming
hereafter that 
.0/ D �0, we distinguish the three reasons for 
 … A . We start
with case (a) where R.
/ … Cb.RT /, proceed to case (b) in which R.
/ 2 Cb.RT /
but 
 fails to satisfy the moment condition (1.6) for � D �? of Assumption 1.2(c),
and finish with case (c), where R.
/ 2 Cb.RT / and (1.6) holds, but t 7! .
; g/.t/

is not absolutely continuous for some g 2 �S .

Case (a). By assumption 
 2 C and 
.0/ has a density, so if R.
/ … Cb.RT /,
then necessarily 
.s/.fyg/ D 3� for some s 2 .0; T �, y 2 R, and � > 0. Fixing N
and 0 < ı < �, it follows from (1.5), the definition of dL. � ; � /, and the union
bound that, for m D dN�e,

P .�N 2 B.
; ı// � P .�N .s/.Œy � ı; y C ı�/ � �/

D P

� NX
iD1

1fjXi .s/�yj�ıg � N�

�

�

 
N

m

!
sup
fuj ;yj g

P
�ˇ̌
Z
.uj /

j .s/ � yj
ˇ̌
� ı 8j � m

�
:(6.19)

Here the supremum is over nonrandom fy1; : : : ; ymg (into which we incorporated
the initial conditions Xi .0/) and all Œinf �; sup ��-valued processes fu1; u2; : : : ;
umg adapted to the filtration Ht generated by fWi .r/ W r 2 Œ0; t �; 1 � i � N g,
while

(6.20) Z
.uj /

j .s/ D

Z s

0

uj .r/dWj .r/:

Each Itô integral in (6.20) is the L2-limit of some Ht -adapted stochastic integrals
of processes that are piecewise constant in time. Therefore, we can and shall as-
sume hereafter that fuj g are simple processes which are constant on each of the
time intervals Œ0; t1/; : : : ; Œtk�1; tk/ for some partition 0 D t0 < t1 < � � � < tk D s
and k 2 N (possibly dependent on N ). The probability we maximize in (6.19) is
then

(6.21) E

� mY
jD1

Gı

�k�1X
`D0

uj .t`/�Wj .t`/; yj

��
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for �Wi .t`/ D Wi .t`C1/ � Wi .t`/ and Gı.´; v/ D 1j´�vj�ı . Such expectation,
when conditioned upon

�r D fuj .t`/;�Wi .t`/; ` � k � 2g [ fuj .tk�1/;�Wi .tk�1/; i; j ¤ rg

becomesY
j¤r

Gı.Z
.uj /

j .s/; yj /E
�
Gı.ur.tk�1/�Wr.tk�1/CZ

.ur /
r .tk�1/; yr/

ˇ̌
�r
�
:

The value of �Wr.tk�1/ is independent of everything else, and clearly all that
matters from �r to the choice of ur.tk�1/ that maximizes (6.21) is the value of
Z
.ur /
r .tk�1/. We thus conclude that the optimal ur.tk�1/ may be assumed mea-

surable with respect to the � -algebra generated byWr.t/, t 2 Œ0; tk�1�, and ur.t`/,
` � k � 2. Substituting optimal uj .tk�1/ of this type, for 1 � j � m, changes the
function Gı considered in (6.21) but retains its form; namely, we need thereafter
to maximize

E

� mY
jD1

G0ı
�
Z
.uj /

j .tk�1/; yj
��

for some (new) functionG0
ı
.´; v/. The previous argument still applies, so proceed-

ing by backward induction, from tk�1 to tk�2; : : : ; t0, we conclude that it suffices
to take the supremum in (6.19) only over fuj W j � mg such that each process uj
is adapted to the filtration generated by Wj . The bound of (6.19) then becomes

(6.22) P .�N 2 B.
; ı// �

 
N

m

!�
sup
u1;y1

P
�ˇ̌
Z
.u1/
1 .s/ � y1

ˇ̌
� ı

��m
;

where the supremum is now over nonrandom y1 2 R and all Œinf �; sup ��-valued
processes u1 adapted to the filtration generated byW1. Sincem=N � � is bounded
away from 0, we get (6.16) from

lim sup
ı#0

sup
u1;y1

P
�ˇ̌
Z
.u1/
1 .s/ � y1

ˇ̌
� ı

�
D 0;

which is an immediate consequence of the stronger result in [31, theorem 1].

Case (b). We continue with b � 0, 
.0; � / D �0, and R.
/ 2 Cb.RT /, whereas
(1.6) fails, namely

(6.23)
Z T

0

.
.t/; jxj1C�?/dt D1

for �? 2 .0; 1� of Assumption 1.2(c). Let 0 � fK " f1 be infinitely differentiable
functions such that

fK.x/ D jxj
1C�? on Œ�K;�1� [ Œ1;K�; fK.x/ � 1 on Œ�1; 1�;

jf 0K j
2
� 8fK ; kfKk1 � 2K

1C�? ; kf 0Kk1 � 2K
�? ; kf 00Kk1 � 2
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(we construct fK by smoothing the function .K ^ .jxj _ 1//1C�? around the points
f˙1;˙Kg). Next, for ZfKN .t/ WD .�N .t/; fK/ consider the stopping times

�KN .r/ WD inf
˚
t � 0 W Z

fK
N .t/ � 2r

	
:

Since fK.x/ � 2jxj1C�? C 1 we have from Assumption 1.2(c) that for some C�?
finite

(6.24) sup
K;N2N

˚
Z
fK
N .0/

	
� 2 sup

N2N
.�N .0/; jxj1C�?/C 1 � C�? :

With kf 00Kk1 � 2 we get upon applying Itô’s formula for ZfKN that, for the contin-
uous martingale MfK

N .t/ of (6.3) and any r � r0 WD C�? C 2kAk1T ,

(6.25) P
�
�KN .r/ � T

�
� P

�
M
fK
N

�
�KN .r/ ^ T

�
� r

�
:

Furthermore, since jf 0K j
2 � 8fK , we have for V.�/ of (6.4) that˝

M
fK
N

˛
.t/ D

1

N

Z t

0

V fK .�N /.s/ds �
16kAk1

N

Z t

0

Z
fK
N .s/ds:

In particular, by the definition of �KN .r/,

(6.26)
˝
M
fK
N

˛�
�KN .r/ ^ T

�
� �

r

N

for � D 128kAk1T . Appealing to the martingale representation theorem,

M
fK
N

�
�KN .r/ ^ T

� d
D ˇ

�˝
M
fK
N

˛�
�KN .r/ ^ T

��
for some standard Brownian motion ˇ. Hence, by (6.25) and (6.26), for any r � r0,

(6.27) P
�
�KN .r/ � T

�
� P

�
sup

t2Œ0;�r=N�

fˇ.t/g � r
�
� 2 exp

�
�
Nr

2�

�
:

Since dL is a metric for the weak convergence in M1.R/ and fK 2 Cb.R/, by
dominated convergence the functionals GK.�/ WD

R T
0 .�.t/; fK/dt on C are con-

tinuous with respect to the distance d. � ; � / of (1.5). Consequently, for anyK 2 N,
there exists ıK > 0 such that

� 2 B.
; ıK/ H) GK.�/ �
1

2
GK.
/:

Further, if GK.�N / � 2T r , then necessarily �KN .r/ � T . Thus, setting rK D
1
4T
GK.
/, we have, for any K and ı � ıK , that

P .�N 2 B.
; ı// � P
�
GK.�

N / � 2T rK
�
� P

�
�KN .rK/ � T

�
;

which, in view of (6.27), yields the bound

lim
ı#0

lim sup
N!1

1

N
log P .�N 2 B.
; ı// � �

GK.
/

8�T
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provided GK.
/ � 4T r0. Our assumption (6.23) and the fact that fK.x/ D
jxj1C�? for all jxj 2 Œ1;K� imply that GK.
/ ! 1 as K ! 1, thereby es-
tablishing (6.16).

Case (c). Steps 1 and 2 of the proof of Proposition 6.1 require only that 
.0/ D
�0 and R.
/ 2 Cb.RT /, both of which hold here. Hence, in view of the derivation
leading to (6.13), we get (6.16) as soon as

(6.28) sup
g2 �S I

g..
; g// D1

for Ig.�/ of (6.15). Furthermore, Ig..
; g// is finite only if the identity

(6.29) .
; g/.t/ D .‰h/.t/ D .
; g/.0/C SHg.
/.t/C h.SV g.
/.t//

holds for some h absolutely continuous. By assumption, there exists g 2 �S for
which the left-hand side of (6.29) is not absolutely continuous on Œ0; T �. In con-
trast, both SHg.
/.�/ and SV g.
/.�/ are absolutely continuous for any g and 
 , hence
so is the right-hand side of (6.29) for any absolutely continuous h, resulting with
(6.28). �

We conclude by showing the exponential tightness of f�N W N 2 Ng.

PROPOSITION 6.3. Under Assumption 1.2(a)–(c), the sequence f�N g is exponen-
tially tight on C . That is, for any finite M there exists a compact KM � C for
which

(6.30) lim sup
N!1

1

N
log P

�
�N … KM

�
� �M:

PROOF. In view of (6.12) it suffices to confirm the criterion for exponential
tightness given in [9, lemma A.2]. Specifically, this amounts to showing as Step 1
that f�N .t/ W N 2 Ng is exponentially tight on .M1.R/; dL/ for each fixed t 2
Œ0; T � (rational), and then proving as Step 2 that, for any fixed � > 0, one has

(6.31) lim
�#0

sup
N2N

1

N
log P

�
sup

0�s;t�T;
jt�sj��

dL.�
N .s/; �N .t// > ı

�
D �1:

Step 1. By Prokhorov’s theorem, the set

f˛ 2M1.R/ W .˛; �/ � C g

is precompact in .M1.R/; dL/ for �.x/ D jxj and any C finite. Hence, to prove
our first assertion, it suffices to show that for some C D C.M; T / <1

(6.32) lim sup
N!1

1

N
log sup

t2Œ0;T �

P ..�N .t/; �/ > 2C/ � �M:

To this end, from (6.24) we have that supN .�
N .0/; �/ � C0 finite, hence with

(6.33) Zi .t/ D

Z t

0

�
�
F�N .r/.Xi .r//

�
dWi .r/;
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it follows by Markov’s inequality, that for any C � C0 C T kbk1

P ..�N .t/; �/ > 2C/ D P

� NX
iD1

jXi .t/j > 2CN

�

� P

� NX
iD1

jZi .t/j > CN

�
� e�CN sup

fuj g

E

� NY
jD1

ejZ
.uj /

j
.t/j

�
:(6.34)

The supremum here is over the same collection of simple adapted processes fuj g

we considered in (6.21) and with Z.uj /j .t/ as in (6.20). By the same argument we
have used en route to (6.22), it suffices to consider the situation where each process
uj is adapted to the filtration generated by the Brownian motionWj . Consequently,
the preceding upper bound simplifies to

(6.35) P ..�N .t/; �/ > 2C/ � e�CN sup
u1

E
�
ejZ

.u1/

1 .t/j
�N
;

where the supremum is now over all Œinf �; sup ��-valued processes u1 adapted to
the filtration generated by W1. Viewing such a process Z.u1/1 .t/ as a time-changed
standard Brownian motion ˇ results in

sup
u1

E
�
ejZ

.u1/

1 .t/j
�
� E

�
exp. sup

r2Œ0;2tkAk1�

jˇ.r/j/
�
<1;

which together with (6.35) yields (6.32).
Step 2. First note that for dBL. � ; � / of (6.12), Zi .t/ of (6.33), and any s; t 2

Œ0; T �,

(6.36)

1

2
dL.�

N .s/; �N .t//2 � dBL.�
N .s/; �N .t//

�
1

N

NX
iD1

jXi .t/ �Xi .s/j

�
1

N

NX
iD1

jZi .t/ �Zi .s/j C jt � sjkbk1

(see [13, proof of theorem 11.3.3] for the leftmost inequality). Thus, we have (6.31)
as soon as we show that, for

osc.ZI �; T / D sup
0�s;t�T;
jt�sj��

fjZ.t/ �Z.s/jg

and any fixed �; ı > 0,

(6.37) lim
�#0

sup
N2N

1

N
log P

� NX
iD1

osc.Zi I �; T / > ıN
�
� ��ı:
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As for the proof of (6.37), similarly to the derivation of (6.34) and (6.35), by
Markov’s inequality we have that

P

� NX
iD1

osc.Zi I �; T / > ıN
�
� e��ıN sup

fuj g

E

� NY
jD1

e� osc.Z
.uj /

j
I�;T /

�
� e��ıN

�
sup
u1

E
�
e� osc.Z

.u1/

1 I�;T /
��N

;(6.38)

where the latter supremum is over all Œinf �; sup ��-valued processes u1 adapted
to the filtration generated by W1. In addition, viewing the continous martingale
Z
.u1/
1 .t/ as a time-changed standard Brownian motion ˇ, it follows by the same

reasoning we applied in Step 1 that

(6.39) sup
u1

E
�
e� osc.Z

.u1/

1 I�;T /
�
� E

�
e� osc.ˇ I2kAk1�;2kAk1T /

�
:

Now, since

osc.ˇI 2kAk1�; 2kAk1T / � 2 sup
r2Œ0;2kAk1T �

fjˇ.r/jg;

which has finite exponential moments of all orders, by sample path continuity of
ˇ and dominated convergence, the right-hand side of (6.39) decays to 1 as � # 0.
Thus, combining (6.39) and (6.38) results in (6.37), thereby completing the proof
of the proposition. �

7 Proof of Proposition 2.7
We work throughout under parts (a)–(c) of Assumption 1.2 with �? D 1.

7.1 Proof of Part (a)
From [2, sec. 3] we have that in any solution of (1.1) the ordered particles

X.1/.t/ � X.2/.t/ � � � � � X.N/.t/ satisfy the SDS

(7.1) dX.j /.t/ D bj dtC�j d ǰ .t/C
1

2
dƒj�1.t/�

1

2
dƒj .t/; j D 1; : : : ; N;

for independent standard Brownian motions f ǰ g where ƒ0.t/ D ƒN .t/ � 0

and ƒj .t/ for j D 1; : : : ; N � 1 denotes the local time at 0 accumulated by
the RC-valued path X.jC1/.�/ � X.j /.�/ by time t . It is also shown in [2, sec. 3]
that strong existence and uniqueness holds for the SDS (7.1). We claim that, with
probability 1,

(7.2) t 7! �N .t/ WD
1

N

NX
jD1

ˇ̌
X.j /.t/ � zX.j /.t/

ˇ̌
is nonincreasing for any two strong solutions X and zX of (7.1) driven by the same
Brownian motions f ǰ g (extending [22, inequality (15)] to arbitrary initial condi-
tions). Indeed, since t 7! .X.j /.t/� zX.j /.t// is of bounded variation, its local time
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process at 0 vanishes. Thus, setting Sj .t/ WD sgn.X.j /.t/ � zX.j /.t//, we have by
Tanaka’s formula, followed by summation by parts, that

d�N .t/ D
1

2N

NX
jD1

Sj .t/
�
dƒj�1.t/ � dƒj .t/ � dzƒj�1.t/C dzƒj .t/

�
D

1

2N

NX
jD2

.Sj .t/ � Sj�1.t//
�
dƒj�1.t/ � dzƒj�1.t/

�
:(7.3)

Because X.j /.t/ D X.j�1/.t/ at times of increase of ƒj�1.t/ and zX.j /.t/ D
zX.j�1/.t/ at times of increase of zƒj�1.t/, it is easy to check, for j D 2; : : : ; N

and all t � 0, that

.Sj .t/ � Sj�1.t//dƒj�1.t/ � 0 � .Sj .t/ � Sj�1.t//dzƒj�1.t/:

Hence, by (7.3) we have, as claimed, that d�N .t/ � 0. Next, with �N and z�N

denoting the paths of empirical measures of X and zX , respectively, we see that for
any t � 0,

(7.4) dBL.�
N .t/; z�N .t// � �N .t/ � �N .0/ D W1.�

N .0/; z�N .0//;

where W1. � ; � / stands for the L1-Wasserstein distance on M1.R/:

W1.˛1; ˛2/ WD inffEŒ jY1 � Y2j� W Y1 � ˛1; Y2 � ˛2g:

Further, as 1
2
dL.˛1; ˛2/

2 � dBL.˛1; ˛2/ (see (6.36)), it follows from (7.4) that

1

2
d.�N ; z�N /2 � W1.�

N .0/; z�N .0//:

Fixing `; � we let �N;`;�.0/ be the empirical measure of zX.j /.0/ D F�1.uj;N /,
with uj;N D j=.N C 1/ and F WD F
`;�.0/ a continuous CDF. By the preceding,
we get (2.15) upon showing that

(7.5) lim sup
�!0

lim sup
`!1

lim sup
N!1

W1.�
N .0/; �N;`;�.0// D 0:

We then complete the proof of part (a) by observing that

N

N C 1
.jxj; �N;`;�.0// D

1

N C 1

NX
jD1

ˇ̌
F�1.uj;N /

ˇ̌
�

Z 1

0

jF�1.u/jdu D .jxj; 
`;�.0//;(7.6)

which is finite since 
`;�.0/ 2 M
.0/
1 .R/, whereas for N ! 1 and any fixed

x 2 R,

�N;`;�.0/..�1; x�/ D
1

N

�
.N C 1/F.x/

˘
! F.x/:
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That is, as claimed our f�N;`;�.0/g satisfy Assumption 1.2(c) (with �? D 0). In
particular,

(7.7) lim
N!1

dBL.�
N;`;�.0/; 
`;�.0// D 0:

Turning to proving (7.5), recall that, for any � � 1,

(7.8) W1.˛1; ˛2/ � �dBL.˛1; ˛2/C 3.jxj1jxj>� ; ˛1 C ˛2/

(for example, this follows from [13, theorem 11.8.2]). From Assumption 1.2(c) we
know that dBL.�N .0/; 
.0//! 0 when N !1, whereas dBL.
.0/; 
`;�.0//!
0 when `!1 followed by � ! 0 (see (2.11)). Combining these facts with (7.7),
(7.8), and the triangle inequality for dBL. � ; � /, we get (7.5) by showing that

lim
�!1

lim sup
N!1

�
jxj1jxj>� ; �

N .0/
�
D 0;(7.9)

lim
�!1

lim sup
�!0

lim sup
`!1

lim sup
N!1

.jxj1jxj>� ; �
N;`;�.0// D 0:(7.10)

With supN .jxj
2; �N .0// finite (see Assumption 1.2(c), �? D 1), we obviously have

(7.9). As for (7.10), from (7.7) and 
`;�.0/ having a density, we deduce that as
N !1 �

jxj1jxj�� ; �
N;`;�.0/

�
!
�
jxj1jxj�� ; 


`;�.0/
�
:

Further, when `!1, � ! 0, and then � !1, we have by (2.10) that�
jxj1jxj>� ; 


`;�.0/
�
�
1

`
.jxj;b��/C 1

�
.jxj2; 
�.0//! 0;

which together with (7.6) yields (7.10).

7.2 Proof of Part (b)
From part (a) we know that Assumption 1.2(c) holds for �? D 0, �N;`;�.0/, and

�
`;�
0 D 


`;�.0/, so we simplify notation by dropping hereafter the superscripts `; �.
That is, we fix 
 2 G with zJ .
/ <1 (see Definition 2.4 and (1.8), respectively),
having R D R.
/ 2 C1

b
.RT /

T
F3=2 (for Fq of (1.7)), starting at R.0; x/ D

F�0.x/, with Rx strictly positive on RT and such that

(7.11) h D
Rt � .A.R/Rx/x

A.R/Rx
2 Cb.RT /

with x 7! h.t; x/ uniformly Lipschitz continuous on RT . The functional on C

(7.12) yJ .�/ D
1

2

Z T

0

.�; U.�/2/.s/ds;

with the continuous-in-time, bounded function on RT

U.�/ WD
hA.R.�//C b.R.�//

�.R.�//
;

is then such that zJ .
/ D yJ .
/ <1.
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To prove the local large deviations lower bound (2.16) we introduce in Step 1 a
suitable change of measure to Q1 for which the relevant Radon-Nikodym deriva-
tive is at least e�N. yJ.
/C�/ in the event f�N 2 B.
; ı/g (when N ! 1 followed
by ı # 0), then verify in Step 2 the relevant LLN (7.16) for �N under Q1. This step
relies on proving in Lemma 7.1 that any limit point y
 of �N has no atoms, from
which we deduce that the corresponding path of CDFs w D R.y
/ solves the weak
form (7.18) of the porous medium equation (1.10). The tilt h in the latter equation
is given by (7.11), so R.
/ is one such solution, and the analysis of Lemma 7.2
guarantees its uniqueness.

Step 1. Since x 7! h.t; x/ is a uniformly bounded, Lipschitz function on RT ,
there exists, for any q 2 R, a probability measure Qq under which, for i D
1; : : : ; N ,

(7.13)
Xi .t/ D Xi .0/C

Z t

0

 q.�
N /.s; Xi .s//ds

C

Z t

0

�
�
F�N .s/.Xi .s//

�
dW q

i .s/;

with  q.�/ D b.R.�//�qU.�/�.R.�// and fW q
i g independent standard Brownian

motions. Furthermore, P D Q0 and, similarly to (6.17) (which has h � 0, i.e.
 q D .1 � q/b.R

.�//), by Girsanov’s theorem

dQq

dP
D exp

�
�qMN .T / �

q2

2
hMN i.T /

�
;

with the continuous martingales

MN .t/ D

NX
iD1

Z t

0

U.�N /.s; Xi .s// dW 0
i .s/

satisfying hMN i.T / D 2N yJ .�N / (see [24, theorem 3.5.1]). By the triangle in-
equality, for any � 2 B.
; ı/,

2j yJ .�/ � yJ .
/j � sup
�2B.
;ı/

ˇ̌̌̌ Z T

0

.�; U.�/2 � U.
/2/.s/ds
ˇ̌̌̌

C sup
�2B.
;ı/

ˇ̌̌̌ Z T

0

.�; U.
/2/.s/ds �
Z T

0

.
; U.
/2/.s/ds
ˇ̌̌̌
:(7.14)

Since b and � are bounded, Lipschitz functions, and h, ��1 are uniformly bounded,
it is easy to check that U.�/2 is a bounded, Lipschitz function of R.�/. Conse-
quently, jU.�/2�U.
/2j � C jR.�/�R.
/j for some finite C and all .t; x/ 2 RT .
Thus, from (6.8) it follows that the first term on the right-hand side of (7.14) con-
verges to 0 as ı # 0. Further, with h and R.
/ in Cb.RT /, also U.
/2 2 Cb.RT /.
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Hence, by dominated convergence, the functional � 7!
R T
0 .�; U.
/

2/.s/ds is con-
tinuous on C , and the second term on the right-hand side of (7.14) also converges
to 0 as ı # 0. We conclude that, for any fixed � > 0 and all ı < ı0.�/,

(7.15) �N 2 B.
; ı/ H)

ˇ̌̌̌
1

2
hMN i.T / �N yJ .
/

ˇ̌̌̌
� �N:

For such ı < ı0.�/, any p D q=.q � 1/ > 1, q > 1, and all N 2 N, we thus have
by Hölder’s inequality that

Q1.�
N
2 B.
; ı//

D P
�
e�MN .T /�

1
2
hMN i.T /1f�N2B.
;ı/g

�
� P

�
e�qMN .T /�

q
2
hMN i.T /1f�N2B.
;ı/g

�1=q
P .�N 2 B.
; ı//1=p

� e.q�1/N.
yJ.
/C�/P

�
e�qMN .T /�

q2

2
hMN i.T /

�1=q
P .�N 2 B.
; ı//1=p

D e.q�1/N.
yJ.
/C�/ŒQq.1/�

1=qP .�N 2 B.
; ı//1=p:

Consider p
N

log.�/ of both sides, taking first N !1 followed by ı # 0, to find
that

lim
ı#0

lim inf
N!1

1

N
log P .�N 2 B.
; ı// � �q. yJ .
/C �/

for any � > 0, q > 1 (hence (2.16) holds), provided that

(7.16) lim
N!1

Q1.�
N
2 B.
; ı// D 1:

Step 2. To prove (7.16), recall that Q1 corresponds to fXi .t/g of (7.13) for drift
 1.�/ D �hA.R

.�// and, for each N 2 N, let QN denote the law of �N un-
der Q1. One then deduces the uniform tightness, and hence precompactness, of
the collection fQN g in the space of probability measures on C . Indeed, Steps 1
and 2 of the proof of [36, theorem 1.1] rely only on a general compactness criterion
for subsets of C (taken from [16, lemma 1.3]), so they can be carried out mutatis
mutandis, appealing here to boundedness of the drift and diffusion coefficients in
(7.13) (in place of boundedness of the corresponding coefficients in the dynamics
treated in [36, theorem 1.1]). Moreover, since �N .0/! �0 D 
.0; � /, the compu-
tations there that involve the initial conditions can be omitted here. To prove (7.16),
it thus suffices to show that the atomic measure ı
 is the only possible limit point
of the sequence fQN g. Alternatively, passing to the relevant subsequence and uti-
lizing the Skorokhod representation theorem in the form of [12, theorem 3.5.1], we
can and shall assume that the variables �N , N 2 N, are defined on the same prob-
ability space and converge almost surely in C , when N ! 1, to some limiting
variable y
 . Thus, the task of proving (7.16) amounts to showing that y
 D 
 with
probability 1.

To this end, fixing g 2 �S and replacing hereafter b.R.�// by �hA.R.�// in the
definition of R�g, note that the left-hand side of the identity (6.2) converges with
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probability 1, as N ! 1 to .y
; g/.t/ � .�0; g.0// for all t 2 Œ0; T �. We claim
that with probability 1 the right-hand side of (6.2) converges to

R t
0 H

g.y
/.s/ds and
consequently for all t 2 Œ0; T �,

(7.17) .y
; g/.t/ � .�0; g.0// D

Z t

0

.y
; gt C .gxx � hgx/A.R
.y
///.s/ds:

Indeed, recall that SV g.�N /.T / is uniformly bounded by C D 2T kAg2xk1 fi-
nite, so hM g

N i.T / � C=N and, with probability 1, the continuous martingale
M
g
N .t/ ! 0 uniformly over Œ0; T � (for example, combine the Burkholder-Davis-

Gundy inequality, as in [24, theorem 3.3.28], with the Borel-Cantelli lemma). Fur-
thermore, we show in Lemma 7.1 that with probability 1 R.y
/ 2 Cb.RT /, from
which one deduces as in the derivation of (6.8), that with probability 1

lim
N!1

Z T

0

.�N ; jF�N �R
.y
/
j/.s/ds D 0:

Since R.y
/ 2 Cb.RT /, also R y
g 2 Cb.RT /. Thus, with hgx and gxx bounded,
the preceding convergence to 0 implies, as in the derivation of (6.10), that with
probability 1

lim
N!1

Z T

0

jHg.�N /.s/ �Hg.y
/.s/jds D 0;

thereby completing the proof of (7.17).
Now, setting w D R.y
/ and having (7.17) hold with probability 1 for all g in a

countable dense subset of �S , we deduce that (7.17) holds for all g 2 �S , which
amounts after integration by parts over R to

(7.18)
Z
R

.f w/.t; x/dx �
Z
R

.f w/.0; x/dx DZ
Rt

Œftw C fxx†.w/ � .hf /x†.w/�dm;

holding for w.0; x/ D F�0.x/ and all f D gx 2 �Sx . Here †.w/ D
R w
0 A.r/dr

and hx is well-defined (m-a.e.), since x 7! h.t; x/ is a Lipschitz function. Note
that, for w 2 C 1;2.RT /, further integration by parts (to eliminate all derivatives
of f ) confirms that this is equivalent to w solving the porous medium equation
(1.10) (with initial conditionF�0). In view of (7.11) one such solution isw D R.
/;
hence with probability 1, y
 D 
 provided we establish the uniqueness of such a
generalized solution. In conclusion, all that remains for establishing Proposition
2.7 is to prove the following two lemmas.

LEMMA 7.1. Consider for  1.�/ D �hA.R.�// the unique weak solution of
(7.13), and suppose that y
 is an a.s. limit point in C of �N . Then, with proba-
bility 1 the probability measures y
.t; � / have no atoms for all t 2 Œ0; T �.
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LEMMA 7.2. Suppose h 2 Cb.RT / with x 7! h.t; x/ uniformly Lipschitz on
RT , for which (1.10) has a bounded classical solution R D u 2 C 1;2.RT / with
u.0; x/ D F�0.x/. It is then the only solution w 2 Cb.RT / of (7.18) with such
initial conditions for which w.t; � / are CDFs of some path in C .

PROOF OF LEMMA 7.1. When proving Proposition 6.2, we first removed the
drift b.R.�// thanks to the bound (6.18), which applies for any uniformly bounded
drift. Using the same argument for the measure Q1 with bounded drift�hA.R.�//,
we conclude as in case (a) of the proof of Proposition 6.2 that, for any � > 0 and
some ı D ı.�/ 2 .0; �/,

(7.19) lim sup
N!1

1

N
log sup

s2Œ0;T �;
y2R

Q1.�
N .s/.Œy � 3ı; y C 3ı�/ � �/ � �1:

Similarly, Step 1 and Step 2 of the proof of Proposition 6.3 apply whenever the
drift is uniformly bounded; hence, for any ı; � > 0, some M D M.�/ finite, and
�.ı/ > 0,

lim sup
N!1

1

N
log sup

s2Œ0;T �

Q1.�
N .s/.Œ�M;M�/ � 1 � �/ � �1;(7.20)

lim sup
N!1

1

N
log Q1

�
sup

0�s;t�T;
jt�sj��

dL.�
N .s/; �N .t// > ı

�
� �1(7.21)

(see (6.32) and (6.31), respectively). Fixing ı.�/ > 0 and M.�/ finite, then �.ı/ >
0, consider (7.19) and (7.20) at all fsi W i � mg on a finite �-net in Œ0; T � and all
fyj W j � `g in a finite ı-net within Œ�.M C 2ı/; .M C 2ı/� to conclude by (7.21)
and the Borel-Cantelli lemma that with probability 1 for all N large enough,

sup
1�i�m

sup
y2R
f�N .si /.Œy � 2ı; y C 2ı�/g � �;

sup
t2Œ0;T �

inf
1�i�m

˚
dL
�
�N .si /; �

N .t/
�	
� ı:

Consequently, as in (6.9),

sup
t2Œ0;T �

sup
y2R
f�N .t/.Œy � ı; y C ı�/g � 3�:

Combining this with the Portmanteau theorem, we infer that, for every � > 0,
there exists a ı > 0 such that for any limit point y
 of �N , with probability 1,

sup
t2Œ0;T �

sup
y2R
y
.t/..y � ı; y C ı//

� sup
t2Œ0;T �

sup
y2R

lim inf
N!1

�N .t/..y � ı; y C ı//

� lim sup
N!1

sup
t2Œ0;T �

sup
y2R
f�N .t/..y � ı; y C ı//g � 3�:
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This shows that with probability 1 the path of measures y
 has no atoms of mass at
least 3�, and taking � # 0 finishes the proof of the lemma. �

PROOF OF LEMMA 7.2. First, note that if (7.18) holds for w.t; � / which are the
CDFs of some path in C and all f 2 �Sx , then it further holds for all yf 2 �S .
Indeed, for any such yf there exist fk 2 �Sx coinciding with yf on Œ0; T �� Œ�k;1/
such that both supk kfk � yf kW 1;2

1 .RT /
and supk;t kfk.t; � / � yf .t; � /kL1.R/ are

finite. Thus, with x 7! h.x; t/ uniformly bounded, globally Lipschitz on RT and
†.w/ � kAk1w, it follows from (3.1) that the value each side of (7.18) takes for
fk converges as k ! 1 to its value for yf , thereby extending the scope of (7.18)
to all of �S . The latter identity involves only .f; ft ; fx; fxx/ and hence holds for
any f 2 C 1;2c .RT /. In addition, setting Kr D Œ0; t � � Œ�r; r�, the identity (7.18)
applies for any f 2 C 1;2.Kr/ such that f .s;˙r/ D 0 for all s 2 Œ0; t � provided
one adds to its left-hand side the boundary termZ t

0

Œ.†.w/fx/.s; r
�/ � .†.w/fx/.s;�r

�/�ds

(which takes into account the jump discontinuity of fx at @Kr ). That is, w.t; x/ is
a generalized solution of the (CP) problem as in [11, def. 1.1] except for replacing
the term fxb.w/ there by .hf /x†.w/. The uniqueness of such nonnegative w 2
Cb.RT /, starting at the nonnegative w.0; x/ D u.0; x/ 2 Cb.R/, thus follows by
adapting the proof of [11, theorem 4.2 (1)] to handle h 6� 1.

To this end, we modify hereafter (7.18) as above and prove the analogue of [11,
(4.2)]. That is, we call w a subsolution if the right-hand side of (7.18) is greater
than or equal to its (modified) left-hand side for every nonnegative f 2 C 1;2.Kr/,
any r > 0, and all t 2 .0; T �, while w is a supersolution when the corresponding
left-hand side is greater than or equal to the right-hand side for any such f; r; t .
It then suffices to show that for some c D c.h/ finite, any supersolution w, all
t 2 Œ0; T �, ` 2 .0;1/, and Œ0; 1�-valued ! 2 C1c .Œ�`; `�/,

(7.22)
Z
R

.u.t; x/ � w.t; x//!.x/dx � c
Z
R

.u.0; x/ � w.0; x//C dx;

where the same inequality holds with u � w replaced by w � u for any subsolu-
tionw. Indeed, by definition of a supersolution (or subsolution), the right-hand side
of (7.22) is 0. Hence, choosing !.x/ as smooth approximations of 1u.t;x/>w.t;x/
on .�`; `/ and sending ` ! 1, we deduce that m-a.e. u � w for supersolutions
and u � w for subsolutions, yielding the stated uniqueness of the solution w. Fix-
ing t; `, and !, we prove (7.22) for a given supersolution w (exchanging the roles
of u and w then yields the proof for subsolutions). As in the proof of [11, (4.2)],
for f D f .n;r/, n; r � ` C 1 that solve suitable linear parabolic first boundary
value problems, we bound the difference between the leftmost terms of (7.18) for
u and w. Taking n!1 followed by r !1 then yields (7.22).
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Specifically, note that †.u/ �†.w/ D .u � w/A? where

A? D

Z 1

0

A.�uC .1 � �/w/d�

is in Cb.RT / and A? � a > 0. Hence, there exist uniformly bounded smooth
functions .An; Bn; Cn/ such that An # A? and Bn # B? D �hA? 2 Cb.RT /,
uniformly on RT , whereas m-a.e. Cn ! C? D hxA?. Now, consider, for each
n and r � ` C 1, the unique classical solution f .n;r/ 2 C 1;2.Kor / of the first
boundary value problem

(7.23)

Lnf WD ft C Anfxx C Bnfx � Cnf D 0 on .0; t/ � .�r; r/;

f .t; x/ D !.x/; x 2 Œ�r; r�;

f .s;�r/ D f .s; r/ D 0; s 2 Œ0; t �:

With An bounded away from 0, the existence and uniqueness of such a solution for
(7.23) is well-known (see, e.g., [29, chap. IV, theorem 5.2]), and furthermore, with
! � 0 also f .n;r/ � 0.

Next, setting g˙n;r.s/ D Œf
.n;r/
x .†.u/ � †.w//�.s;˙r�/, we use the test func-

tion f D f .n;r/ in our modified (7.18) to bound the left-hand side of (7.22) by

(7.24)

Z r

�r

.u.0; x/ � w.0; x//Cf
.n;r/.0; x/dx �

Z t

0

�
gCn;r.s/ � g

�
n;r.s/

�
ds

C

Z
Kor

.u � w/
�
f .n;r/xx .A? � An/C f

.n;r/
x .B? � Bn/ � f

.n;r/.C? � Cn/
�

dm:

Recall the uniform boundedness of u � w and the uniform convergence to 0 of
A? � An and B? � Bn. Thus, similarly to the derivation of [11, (4.12)], the last
term of (7.24) goes to 0 when n ! 1, provided sups;x;n;r f

.n;r/.s; x/ � c finite

and both en WD kf
.n;r/
xx kL2.Kr / and �n WD kf

.n;r/
x k1 are uniformly bounded in n.

Taking then r !1 yields (7.22) if in addition sups;n jg
˙
n;r.s/j ! 0 as r !1.

Turning to prove the latter four estimates, assume first that m-a.e. hx � 0 and
hence Cn � 0 for all n and .s; x/ 2 RT . Then, with An � a > 0, the maximum
principle applies to the parabolic equation (7.23) (see, e.g., [15, sec. 2.1, theorem
1], where our time direction is reversed compared to the setting there), resulting in
0 � f .n;r/.s; x/ � supx !.x/ � 1 for all n; r (as in [11, lemma 4.1, (i)]). Simi-
larly, taking � > supn kAn C jBnj � Cnk1 and v.˙/ D f .n;r/ � �.˙/ for �.˙/ D
e`˙xC�.t�s/, one has that Lnv.˙/ � 0, while v.˙/.s;˙r/ D ��.˙/.s;˙r/ � 0
and v.˙/.t; x/ D !.x/ � �.˙/.t; x/ � 0. Hence, by the maximum principle, both
v.C/ � 0 and v.�/ � 0, yielding the bound f .n;r/.s; x/ � e`�jxj (as in [11, lemma
4.1, (ii)]). Equipped with this bound, we follow the proof of [11, lemma 4.1, (iii)].
Specifically, taking �.˙/ D y.r/e˙�x for y.r/ D e`�.�C1/.r�1/ and constant
� � 1, which makes �2An � �jBnj � Cn nonnegative on RT for all n, results in
Lnv.˙/;˙ � 0 for v.˙/;˙ D �.˙/ ˙ f and f D f .n;r/. Thus, the four functions
v.˙/;˙ satisfy the maximum principle on each of the two components of KrnKr�1.
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Since f .s;˙r/ D f .t; x/ D 0when jxj � r�1, while jf .s;˙.r�1//j � e`C1�r ,
by our choice of �.C/, the maximum of v.C/;˙ on the positive component of
Kr n Kr�1 is attained at x D r , where v.C/;˙.s; r/ D �.C/.r/ is constant.
Hence, v.C/;˙x .s; r�/ � 0, yielding that jfx.s; r�/j � �e�e`C1�r . Similarly,
the maximum of v.�/;˙ on the negative component of Kr n Kr�1 is attained at
x D �r , where v.�/;˙.s;�r/ D �.�/.�r/ is constant. Hence, v.�/x .s;�r�/ � 0,
so jfx.s;�r�/j � �e�e`C1�r , and sups;n jg

˙
n .s/j ! 0 when r ! 1. Hav-

ing uniform ellipticity and .An; Bn; Cn/ uniformly bounded, the uniform bound
on �n follows by applying [29, chap. III, theorem 11.1] in our setting. Finally, to
bound en we multiply the linear PDE (7.23) by fxx and integrate over Kr as in
the proof of [11, lemma 4.1, (v)]. Following the derivation after [11, (4.10)], since
f
.n;r/
t .s;˙r/ D 0, integration by parts of the term ftfxx results inZ

Kor

An
�
f .n;r/xx

�2 dm �
1

2

Z r

�r

!0.x/2 dx

C

Z
Kor

f .n;r/xx

�
Cnf

.n;r/
� Bnf

.n;r/
x

�
dm:

(7.25)

Furthermore, Kr is compact and Cnf .n;r/, Bnf
.n;r/
x are uniformly bounded.

Hence, by the Cauchy-Schwarz inequality, the rightmost term of (7.25) is bounded
by �2en for some �2 D �2.r; h/ finite. In addition, the left-hand side of (7.25)
is at least ae2n, whereas the first term on its right-hand side is some �1 D �1.!/

finite. Consequently, ae2n � �1 C �2en, yielding the desired uniform bound on
en. This completes the proof in case hx � 0. More generally, setting c D e�T

for � > k.C?/�k1, the function zf .n;r/ D e�.s�t/f .n;r/ satisfies (7.23) with
zCn D Cn C � � 0. Thus, by the preceding supf .n;r/ � c sup zf .n;r/ � c,
supn kg

˙
n;rk1 � c supn kzg

˙
n;rk1 ! 0 as r ! 1, and en � ck zf

.n;r/
xx kL2.Kr /,

�n � ck zf
.n;r/
x k1 are both uniformly bounded in n, as claimed. �
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